砂浜性二枚貝の移植時の減耗に関する基礎的考察

安 永 義 暁 1)

Basic Studies of Mortality in Transplantation of a Few Species of Sandy Beach Bivalves

YOSHINOBU YASUNAGA 1)

Abstract

Three species of bivalves which habit in sandy beach were transported from the coast of Ibaragi Prefecture and of Fukushima Prefecture to our laboratory to study the causes of their mortality after transplantation into the coast of Japan Sea. As Gomphina melanaegis was sensitive to the shock of transportatation, about 50% indivduals of them died in ten days after transplantation.

Meretrix lamarchi was sensitive to low water temperature and limiting low water temperature for their survival in winter was 8-10°C. Spisula sabalensis was sensitive to high water temperature and limiting high water temperature in summer was 26-28°C.

On the whole any species was tolerant to change of salinity of sea water and they survived for 10-20 days in 40-60% sea water solution.

沿岸浅海海域での増殖事業の一つとして各種二枚貝の移植があげられる。移植の目的は対象貝類の移植水域での生長による附着価値の増加と、移植水域での新たな母貝集団造成にある。この目的にそって外海性砂浜域の多い日本海ブロックにおいてもハマグリ、チョウセンハマグリ、コタマガイ等の二枚貝を太平洋岸から移植する事業が各地で実施されている。しかしながら、移植後の経過や効果に関する調査研究は少なく、砂浜域における二枚貝移植事業の成否の確認はほとんどなされていない状況にある。移植事業はその方法の簡便さと速に研究対象からはずされ勝ちとなり、成果についての詳細な分析が行なわれることなく方法論の確立を見ぬままに今日に至っていると言えよう。

今後の砂浜における増殖対象生物として地先定着を期待した二枚貝類の移植、種苗放流の重視されることが予測される。しかし単純な試行錯誤的移植、あるいは種苗放流では事業の安定化への期待は乏しいであろう。

今回砂浜浅海域における二枚貝の移植技術開発のための基礎考察としてチョウセンハマグリ、ホッキガイ、コタマガイの3種の砂浜性二枚貝を対象に移植時の減耗に関する若干の検討を行なった。

1) 〒951 新潟市永道町1丁目5939-22 日本海区水産研究所
 (Japan Sea Regional Fisheries Research Laboratory, Suido-cho, Niigata 951, Japan)
I. 材料および方法

チョウセンハマグリおよびコタマガイは茨城県産の殻長4〜9cmの成貝を、また、ホッキガイは福島県産の殻長6〜9cmの成貝を材料として用いた。なお、これらの輸送は漁獲後24時間以内に行なった。輸送に際しては材料を収容したコンテナに海水をひたしたスポンジあるいは厚布を入れて貝を覆い、適宜水冷することで乾燥と温度上昇による活力低下を防いだ。輸送の時期はいずれの種類とも夏季を避け5〜6月と11〜12月に行なったが輸送容器内の気温はほぼ15〜20℃に保たれた。また、輸送所要時間は6〜8時間であった。

輸送終了後はただちに研究所内の水槽中に収容、輸送中の殻死あるいは損傷個体を除いたのち各種試験に供した。輸送中の殻死損傷個体数は各種類とも全個数の0.5％以下で僅小であった。

本研究における調査項目と方法は以下の通りである。

1. 輸送後の短期生残率変化

輸送による種々の材料への負荷が移植後の生残率にどの程度影響するかを調べるため各種類とも100個体をプラスチック箱に重ならないように収容、生海水を流したコンクリート水槽（1.5×2.5×1.5m）中に垂下して20日間におわたり生残率の変化を調べた。また、輸送後3日間を経た個体を材料とし、自然海域に移入した場合の生残率変化を調べるため耐波性および防鎖を考慮した金属製箱（90×60×20cm）5個に各種類とも100個体を収容、試験地（新潟県間瀬漁港内水深約1m）ロープで垂下した。

2. 長期生残率変化

輸送後10日間を経過して初期の殻死がみられなくなった時点の材料を用い、水槽で飼育を続けて夏期の高温時、冬期の低温時における生残率の変化を調べた。短期実験と同じコンクリート製水槽3基に5〜10cmの厚さに砂をきし各種類とも100個体を収容、生海水を流した。生残数の測定は海水をぬき、砂中から掘り出して行なった。

3. 塩分・水温と生残率、生理活性の関係

低塩分に対する耐性を調べるため各種類を20〜80％海水（塩分7〜27％）に設定した水槽に投入し、生残率の経日変化を測定した。

また、高水温、低水温に対する耐性を調べるため各種類を5〜30℃の水温に設定した水槽に投入し、生残率の経日変化を求めた。水槽は300ℓの容の塩水製で循環ろ過方式とし、通気した。各種類とも1設定塩分、1設定水温について20〜40個体を使用した。なお、実験期間中投餌はしていない。

次いで水温と酸素消費量の関係を流水式呼吸測定装置を用いて調べた。また、餌料としてNitzschia closteriumを用い水温と日間餌料摂過量の関係を測定した。日間摂過量は材料を入れない容器を対照として下式により求めた。

\[\text{ろ過量} = \text{対照容器} \times \text{実験容器残存餌料量} \]

なお、材料からの排泄物は定期的にスポイトで除去した。
II. 結 果

1. 輸送後の短期生残率変化

20日間の最終生残率はチョウセンハマグリがもっとも高く97.5％、次いでホッキガイの92.5％であった。コタマガイは前記2種と比較して減耗が大きく最終生残率54.5％であった。コタマガイの生残率を経日的にみると輸送後2日目の低下が著しく、約40%が観死している。その後6日目まで減耗が続くが以降は観死がみられなかった。ホッキガイについても同様で2日目で6％の減耗、その後4日目まで若干の減耗があったが以降は観死がみられなかった。チョウ

第1図 種類別にみた輸送後の水槽内生残率の経日変化

Fig. 1. Changes in survival rate of three species of bivalves in the water tank after transportation. Explanation of species is as follows.
○ Meretrix Lamarcki ● Gomphina melanaeagis
▲ Spisula sachalinensis

第2図 種類別にみた輸送後の試験地における生残率の経日変化 種類は第1図に同じ

Fig. 2. Changes in survival rate of three species of bivalves in the cages at the shore after transportation. Explanation of species same as follows in Fig. 1.
センハマグリでは顕著な減耗はみられず、13日目まで3～5日の間隔で1～2個体、比率で1～2％が発死する程度であった（第1図）。
一方試験地における測定結果では前述の水槽内ほどの著しい種類間の差はみられなかった。
ただし、30日間の最終生存率はチョウセンハマグリ98%、ホッキガイ94%に対しコタマガイ86％とコタマガイの生存率がもっとも低かった。各種類の生存率変化は全般的にゆるやかであったが、コタマガイの1日目の5％、ホッキガイの25～30日目の8％がやや大きな減耗であった（第2図）。
なお、環境条件については水温、塩分のみ測定したが、水槽、試験地とも大きな変化はみられず水温は13～15℃、塩分は30～33％の範囲であった。

2. 長期生残率変化
短期生残率変化に関する結果と異なり、冬期にはチョウセンハマグリ、夏期にはホッキガイの大顕的な生存率の低下がみられた。
冬期低水温時に当る2月上旬～4月下旬までの83日間の最終生存率はホッキガイが100％、コタマガイ80％、チョウセンハマグリ53％となって、チョウセンハマグリの減耗率がもっとも高かった（第3図）。
減耗率の高かったチョウセンハマグリの生存率低下をみると測定開始後30日までは5～6％のゆるやかな減耗であったのに対し、続く30～53日には生存率94％から59％と急速に低下、35％が発死していた。53日以降になると再び減耗はゆるやかになり、3％の発死にとどまった。コタマガイの生存率の低下もほぼ同様な傾向を示し、30～53日にかけての低下が著しく、13％が発死した。
飼育期間中の水温と塩分変化のうち、水温は飼育開始後30日までの2月下旬がもっとも低く、最低水温5.7℃が記録された。以後70日の4月上旬までは多少の上昇がみられるが最高水温でも9.8℃であり10℃を越えていない。70日を過ぎると明瞭な水温上昇傾向がみられ、10～13℃となった。
塩分については測定間隔が水温にくらべ大きいため変化傾向を明確に把握するには至らなかった。

第3図 種類別にみた水槽内塩分、水温変化と生存率の関係。種類は第1図と同じ。1973年2月～4月
Fig. 3. Relation between survival rate of three species of bivalves and changes of salinity and of water temperature in the water tank. June～August 1978. Explanation of species same as in Fig. 1.
つたが全期間を通じて25〜32%の変化でやや低塩分傾向であった。とくに70日前後の4月下旬に30%未満の低塩分の測定される日が多かった（第3図）。
一方、夏期の高水温時の生残率については飼育開始後30日と70日の2回の測定のみであったので細かな傾向の把握はできなかった。しかし最終生残率は冬期と逆にホッキガイが極端に低く7%であった。これに対し、チョウセンハマグリは85%，コタマガイは100%と高かった。飼育の中期間にある30日までには3種類とも100%の生残率であり、チョウセンハマグリ，ホッキガイの減耗はその後の30〜70日間に生じている。
水温は飼育開始後から急増し，終了期まで上昇傾向が続いている。上昇速度は40日後までに大きく15度から24度となり，その後は上昇，下降をくり返し，最高水温28〜29度に達している。塩分は冬期とぐらべて高く31〜34%の範囲で変化し，30%以下の低塩分は測定されなかった（第4図）。

第4図 種類別にみた水槽内塩分，水温変化と生残率の関係。種類は第1図に同じ。1973年6月〜8月

Fig. 4. Relation between survival rate of three species of bivalves and changes of salinity and of water temperature in the water tank. June-August 1978. Explanation of species same as in Fig. 1.

3. 塩分・水温と生残率，生理活性の関係
低塩分中における生残率変化は種類によってかなり異なっている。まず，ホッキガイに関して20日間の投入期間で100〜60%海水では飼育に失敗がみられなかった。40%海水になると7日で飼育個体が出現し始め，以降11日経過した時点では15%の生残率となった。20%海水でもやはり7日で50%が飼育，8日で生残率15%となった。以後16日までこの値が維持されるが17日経過の時点で全個体が飼育が終了した（第5図）。
チョウセンハマグリも100〜60%海水までは30日の投入期間で90〜100%の生残率を示し飼育は少なかったが，40%海水になると11日から減耗し始め，最終生残率は75%となった。20%海水でも11日から減耗が始まり，以後急速に下降して26日経過時点まで全個体が飼育が終了した（第6図）。
コタマガイは以上2種とくらべると減耗は小さく，30日の投入期中100〜40%海水まで
は95～100％の最終生殖率を示した。20％海水になると8日経過時から減耗が始まり、15日以降ゆるやかな減耗が続くが最終生殖率は70％であった（第7図）。

また、水温に関し、3種とも10～25℃においては10日間の投入期間中減耗はみられなかったので8℃以下の低温と28℃以上の高温について生殖率変化を求めた。低温については6～8℃の設定水温で10日間の投入期間をもうけたが3種とも生殖率は100％で死滅個体はなかった（第8図）。ただし、6℃水温下のチョウセンハマグリは終了時学年数以上が殻を半開状態

第5図 ホッキガイの海水濃度別にみた生殖率経日変化。100％海水の塩分は33.5％。水温は10℃

Fig. 5. Changes in survival rate *Spisula sachalinensis* in each concentration of sea water solution. Salinity of 100% solution is equivalent to 33.5%.

第6図 チョウセンハマグリの海水濃度別にみた生殖率経日変化。100％海水の塩分は33.5％。水温は20℃

Fig. 6. Changes in survival rate of *Meretrix lamarchi* in each concentration of sea water solution. Other explanation same as in Fig. 5.
第7図 コタマガイの海水濃度別にみた生残率経日変化。100%海水の塩分は33.5%。水温は20℃
Fig. 7. Changes in survival rate of *Gomphina melanaegis* in each concentration of sea water solution. Other explanation same as in Fig. 5.

第8図 種類別にみた水温と生残率経日変化の関係。種類は第1図に同じ
Fig. 8. Relation between survival rate of three species of bivalves and water temperature. Explanation of species same as in Fig. 1.

にしたままの衰弱個体であった。そのため低水温への耐性をさらに詳しく知るために本種のみ5℃での生残率変化を調べた。その際、材料の大小による耐性の差をみるために殻長4〜9cmまでを1cm間隔にわけ、殻長サイズ別に生残率を調べた。

その結果9日経過時点まで各サイズとも生残率100%であったが10日目から殻死する個体が出現し始めた。以降各サイズともに急速に殻死して14日あるいは15日経過時点で全個体殻死した（第9図）。

60,80,100% S.W

40

20

Survival rate

Days of rearing

0 5 10 15 20 25 30 days

100% 6,7,8℃

Survival rate

Days of rearing

0 2 4 6 8 10 days
一方、高水温については3種を28〜30℃に20日間投入したが、全期間を通じてチョウセンハマグリ、コタマガイの殻死はみられなかった。ホッキガイも28℃までは殻死がみとめられなかったが29℃では3日経過時で50％が殻死、以降減耗が続いて5日経過時点で全数殻死した。30℃では3日経過時で80％が減耗、4日経過時点で全部が殻死した（第10図）。
さらにホッキガイとチョウセンハマグリについて酸素消費量および日間塩分過酸を測定した。
まず酸素消費量についてはホッキガイ、コタマガイとも水温変化に伴なう増減傾向は類似しており、両種とも25℃までは水温上昇とともに消費量が増加し、30〜32℃にかけて減少してい
Fig. 11. Relation between O₂ consumption of two species of bivalves in the water temperature. The figure in parenthesis indicates Q₁₀ value between adjoining water temperature. Explanation of species same as in Fig. 1.

Fig. 12. Relation between diurnal filtration rate of diatoms of two species of bivalves and water temperature. Explanation of species same as in Fig. 1.
る。体重当り酸素消費量はチョウセンハマグラリの力が大きく、ホッキガイのはば2～2.5倍の値を示した。水温上昇に伴なって酸素消費量が増加する部分における呼吸温度係数Q10値を計算すると両種とも4～10℃の間がもっとも大きくホッキガイで4.90、チョウセンハマグラリで3.81であった。次に両種とも15～20℃で大きしくホッキガイで3.06、チョウセンハマグラリで2.63であり困難であった（第11図）。

飼料の過量も酸素消費量と同様の水温上昇に伴なう増減変化を示し、ホッキガイは15℃、チョウセンハマグラリは20℃で最大となった（第12図）。ホッキガイでは10℃の3.4mgO₂/gから15℃の3.5mgO₂/gと微増するが20～30℃では2.6～1.4mgO₂/gと大幅に減少した。コマヤガイは10～15℃までは2.2～2.3mgO₂/gと微増し、20℃で最大値2.4mgO₂/gを示すが25～30℃になると1.7～0.2mgO₂/gと大幅に減少した。

なお、飼料の過量を重量へ換算するとあたっては培養日数10～30日間の飼料残蓄1個体あたり平均重量を別途計出し、その値を過猶遊個数に乗じて求めた。

III. 考察

1. 輸送後の短期生存率変化

移植時輸送および新環境下への移入によって対象魚類うらける種々の生理的負荷はその後の生存、成長にも相応の影響を及ぼすものと推察される。移植したチョウセンハマグラリの体側に移植輸が形成されるという報告（阿井ほか、1959；阿井、1964；阿井、1965）があるが移植輸は当然移植により一定期間の負の生長抑制化を意味するとみられる。

今回の移植実験では3種類の魚をほぼ同一の方法で輸送し、同一環境下に移入してその後の生存率をもって3種間での耐性を比較した。まず水槽内で測定ではチョウセンハマグラリ、ホッキガイの90％以上という高生存率に対し、コマヤガイは50％近くが死滅し、輸送、移入に弱い傾向が明らかにされた。

試験地での測定では輸送直後の大量死発生を経て生き残った個体をクエンとして用いているため水槽での測定結果と比較して3種類ともに生存率は高くなっている。ただし、チョウセンハマグラリ、ホッキガイの処理がそれぞれ6％、8％であったのに対しコマヤガイは14％と高く前2種にくらべ輸送、移入の影響が長く残りやすいことを示すものとみなされるよう。

現在コマヤガイを海面側から日本海側に移植する事業が各地で行われているが、今回の実験結果のように同じ輸送方法によりながら他の2種にくらべて移植後の能動率が低かった原因を明らかにするとともに移植後の生存、成長についての追跡調査をいさぎ実施する必要がある。

2. 長期生存率変化

輸送および新しい環境への移入という負荷に耐性を示した移植魚類にとっては移植域の環境条件に順応し、定着して成長できるかが次の問題となる。今回は環境要因のうちの水温、塩分の変化と生存率の関係を水槽飼育によって調べた。

冬期低温時の成動はチョウセンハマグラリが顕著であり、夏期高温時にはホッキガイの成動が顕著であった。これを水温との関係でみると冬期では6～8℃という低温が続く期間中にチョウセンハマグラリ、コマヤガイの死滅率が高く、9～12℃に上昇し始めると両種の成動率は低下している。

夏期では生存率の測定間隔が長かったため明確な判断はできなかったが、22～24℃以上になるとホッキガイの死滅率が高まる傾向がみられた。
塩分については測定間隔が水温にくらべて長かったので詳細な変化状況は不明であるが冬期、夏季ともにその減耗傾向との関連性はみられない。ただし、冬期に25〜30%の低塩分の日が多かった点がチョウセンハマグリの減耗と関連しているか否かについては多少の検討を要しよう。

3. 塩分・水温と生残率、生理活性の関係

稀釈海水での生残率からみて低塩分に対する耐性はコシマガレイがもっとも高く、次いでチョウセンハマグリ、ホッキガイの順となる。しかし、ホッキガイでも100〜60%海水までは20間飼死がみられず、20%海水でも6日間飼死がみられない。

日本海ブロックにおける沿岸沿線域での定常的な海洋観測報告書がみられないため池原慎子氏、鈴木文雄氏、小野寺氏、等の観測結果を採用すると沿岸の通常の塩分は前記70〜100%海水に相当するおおよそ25〜34%である。したがって上記貝類の移殖後の減耗を推測する場合、通常の低塩分による短期間での致命的影響をうけることは考えられない。

しかし、20〜40%海水に相当する7〜15%の低塩分が5〜10日間以上にわたり続いた場合には飼死個体あるいは移殖水域からのの逃避個体の出る可能性がある。この点から陸地の異常出水の影響を長期にわたってうけやすい水域、例えば大河川の河口周辺域へのチョウセンハマグリ、ホッキガイの移殖については慎重さを必要としよう。

水温変化に対する耐性ではコシマガレイが広温性であるのむらべチョウセンハマグリは低水温に、ホッキガイは高水温に強い傾向がみられた。本来チョウセンハマグリは暖海性、ホッキガイは寒海性の種類とされる点から当然の結果とも言えよう。

チョウセンハマグリの場合、5〜6℃の水温で飼死個体あるいは死亡個体の個体が出現した点からみて7〜8℃が生残限界低温と考えられる。この点は前述の長期生残率変化において6〜8℃の低温世代の飼育が短い期間の減耗が顕著であった結果と符合している。

前述の日本海ブロックでの各種沿岸沿線海洋観測報告によると沿岸水域の表層域から10m層までの冬期最低水温はほぼ7〜9℃であり、気温の影響の大きい浅海沿線域では8℃以下の低温が10日間以上続く可能性は否定できない。仮にチョウセンハマグリこのような水域に移植されたとしても冬期の低温で飼死するか、低温を避けるため移動してしまうことが予想される。

したがって日本海ブロック中部〜北部の浅海域のように8〜9℃以下の低水温が長期的に続く可能性のある水域に本種を移植しても定着を期待することはおそらく困難であると推察される。太平洋側における本種の漁業資源上の北限域とされる鹿島灘域での年間最低水温が通常10〜11℃程度（浅野ほか，1952；藤本，1956〜7）である点からみても本種の移植は最低水温が10℃以上にある沿岸水域が適当と考えられる。

ホッキガイの場合は逆に高水温が問題となる。今回の実験では測定期間が10日間と短かかったものの28℃までは飼死個体はみられなかった結果から生残限界に相当する高水温はほぼ27〜28℃とみなされる。日本海ブロックでの夏期の高水温は前述の資料によると沿岸水域の表層域〜10m層ではほぼ27〜29℃であるが29℃では3〜5日で50〜100％飼死する可能性がある。したがって本種の移植の場合には29℃以上の水温が3日間以上続く可能性のある水域を避ける必要がある。

太平洋側の本種の分布南限域とされる鹿島灘で年間最高水温が通常23〜24℃程度（原田ほか，1952）である点からみても本種の移植には最高水温が25℃以下となる沿岸域が望ましいと考えられる。

水温と酸素消費量の関係ではチョウセンハマグリ、ホッキガイとも25℃での値を最大として
30℃では減少している点から両種とも25～30℃に呼吸活動を低下させる臨海水温があると考えられる。また、生理的常態からの逸脱を示すとみなされるQ10値>3.0は両種とも6～10℃に生じており、両種とも6～10℃に代謝量が異常に低下する臨界水温があると考えられる。

測定水温間隔が4～5℃であったため上記両種の呼吸活動の異常を来たす臨界水温を正確に求めるまでには至らなかったが、測定間隔水温の中間を基準として生理的常態を保持する上での両種の適性水温を求めると8±1℃～27.5±1.5℃となる。

次に水温と餌料ろ過量の関係においてはホッキパイでは15℃、チョウセンハマギでは20℃で最大となり、それ以上の水温では両種とも急速に減少し、ろ過活動力が低下する傾向がみられる。ろ過量は必ずしも餌料量と等しくはないが、ろ過活動力が餌料活動力に対応すると仮定すれば餌料活動上の適水温はホッキパイでは10～15℃、チョウセンハマギでは10～20℃とみなせる。

また、同様にろ過量=餌料量と仮定し、10～25℃での平均ろ過量を基準に測定対象としたサイズ（ホッキパイ、殻長7～9cm・平均重量117.4G；チョウセンハマギ、殻長6～8cm・平均重量75.2G）を1t移植した場合の年間餌料量を試算すると下記のようになる。

① 10～25℃での日間平均餌料量（ろ過量）
ホッキパイ: 2.98mg/G
チョウセンハマギ: 2.13mg/G

② 1tあたり年間餌料量
ホッキパイ: 2.98×365×10^6=1,087.7kg
チョウセンハマギ: 2.13×365×10^6= 774.5kg

ただし、この計算では餌料に関する選択性、餌料効率等を考慮していない。大量の移植を行う場合には移植対象水域に移植量に適した餌料生産量が当然必要である。今後大規模な移植あるいは増殖を計画に当たっては対象とする貝の種類に関し、上記飼料選択性、飼料効率を加味して必要飼料量を求める必要がある。

一方、日本海ブロック沿岸での二枚貝類の飼料生産に関する調査研究は極めて少ない。砂浜性二枚貝類の飼料に関する定性、定量的な調査が本ブロックにおいてもさらに進められるべきであろう。

なお、コタマガイについては酸素消費量、餌料ろ過量の測定を実施していないが水温、塩分と生産率の関係から他の2種よりも広温性、広塩性であることが認められる。したがって、水温、塩分の点に限れば他の2種よりも移植対象水域を広げられる可能性がある。

IV. 結 論

以上3種の砂浜性貝類を対象として移植後の生残条件に関する基礎的考察を行なった。移植は単対象種が短期間生存するだけでは無意味であり、移植域で生長して漁獲対象となると同時に新たな母貝資源となることが望ましい。

移植の成否は対象種の生理・生態上の特性と対象海域の水路および物理性状の環境との整合性にかかっている。日本海ブロックにおける砂浜性二枚貝類の移植技術の発展させるためには上記整合性を主眼に置いた過去の移植事例の解析がまず必要である。また、今後の移植についても対象水域の環境条件のチェックと、対象種の生残、生長、成熟、移動、等に関する詳細な追跡調査が望まれよう。
本論を終えるにあたり、材料入手の上で種々の御便宜を計って頂いた福島県水産試験場松川浦分場山口場長はじめ場員各位、茨城県水産試験場真岡増殖部長はじめ場員各位に御礼申し上げます。また、論文作成上種々御助労頂いた浅海開発部小金沢室長（現水産庁）、興石技官、長沼典子氏に深謝致します。

文 献

阿井敏夫・野中 忠・大須賀義作（1959）。伊豆半島におけるチョウセンハマグリの移植。水産増殖、6(3)：1〜7。
阿井敏夫（1964）。伊豆半島におけるチョウセンハマグリ移植事業の効果事例。水産増殖、12(2)：95〜108。
阿井敏夫（1965）。チョウセンハマグリの移植の現状と問題点。水産増殖 臘時号 5，：2〜9。
浅野長雄・藤本 武（1952）。茨城県海産動物相に関する研究 I。貝類相について。昭和28年度茨城県水試報告：77〜86。
藤本 武（1956〜7）。鹿島灘有用貝類の増殖に関する基礎研究 VI。チョウセンハマグリ（M. lamarchii）種貝の成長について。昭和32〜33年度茨城県水試報告：128〜134。
原田民雄・藤本 武・木梨 清（1952）。鹿島灘有用貝類の増殖に関する基礎研究 I。鹿島灘沿岸の底牏生物群集について。昭和28年度茨城県水試報告：104〜109。
原田民雄・藤本 武・木梨 清（1952）。鹿島灘有用貝類の増殖に関する基礎研究 II。チョウセンハマグリ（M. lamarchii Deshayes）の産卵期について。昭和28年度茨城県水試報告：110〜112。
原田民雄・藤本 武・木梨 清（1952）。鹿島灘有用貝類の増殖に関する基礎研究 III。ホッキガイ（Mactra schalinensis Schrenck）の増殖に関する生態学的研究。昭和28年度茨城県水試報告：113〜120。