日本海西部海域における浅海帯下部と漸深海帯貝類の特性

土田 英治1)・林 育夫2)

Characteristics of Lower-Sublittoral and Bathyal Molluscs in the Western Area of the Sea of Japan

Eiji TSUCHIDA1) and Ikuo HAYASHI2)

Abstract

Benthic molluscs were sampled at 13 stations by trawling and dredging in the Oki-Kaikyo Strait and off Hinomisaki in the western part of the Sea of Japan from 30 Oct. - 1 Nov., 1990. These sampling stations covered lower-sublittoral and bathyal zones with depths ranging from 60 to 1200 m. The molluscan shells collected from the two bathymetric ranges were separately listed. Totals of 154 and 37 species were respectively recorded from depths above and below 200 m, together with some taxonomic and ecological remarks. Photographs of 88 rare and/or ecologically interesting species were also given. The faunal representatives were categorized into 8 distributional patterns in relation to the physical environment, and their bathymetric and biogeographical distributions were discussed. Buccinum tsunai, an endemic species in the Sea of Japan, were most abundantly collected in the bathyal zone, and its morphology and population structure were analyzed.

Key words: lower-sublittoral, bathyal, molluscs, distribution, Buccinum tsunai, Sea of Japan

はじめに

海面の貝類については、中原ら（1978）が山口県沖で漁網によって採取された有用腹足類6種を、土田ら（1991）、土田・杉村（1992）が、山口県沖の見島と角島周辺においてドレッジで得た貝類を数種報告したに過ぎない。

今までに、日本海西部海域における水深100m以深の貝類については、深海海域では底曳船による採取、浅海ではドレッジによる調査があるが、いずれも断片的な記録に過ぎず、正確な位置と密度に基づく貝類相の調査記録は見られない。著者らは1996年11月の東京大学海洋研究所の淡青丸（496トン）で島根県の日御崎沖の水深58-1233mと、隠岐島と島根県の間に位置する隠岐海峡の水深71-196mで、ドレッジやビームトロールを使用して貝類調査を行った。そこで同海域の浅海帯下部から深海帯の貝類について、日御崎沖と隠岐海峡の水深150-200mより浅い海域と、それより深い日御崎沖の1200mまでの海域に分けて述べ、日本海西部海域の貝類相の特性について考察する。あわせて、水深500m以深で優占し、日本海の固有種であるツパイ Buccinum isabai KURODA その形態や個体群の特徴についても報告する。

本報告をまとめるにあたり、東京大学海洋研究所の白山敬久教授をはじめ採集作業に協力をいただいた乗船研究者および淡青丸の乗組員の方々に厚くお礼申し上げる。また、貝類の分布型についてご討議いただいた千葉県立中央博物館の黒住恵二氏に感謝する。なお、本研究は著者の一一人（林）の東京大学海洋研究所研究船淡青丸共同利用および外来研究員共同利用の一部として行われた。

調査範囲および方法

今回の調査は島根県の日御崎沖で南から北に向かって1測線と、隠岐島と島根県、鳥取県の間に位置する隠岐海峡で東西方向に調査点を設けた（Fig. 1）。日御崎沖の調査は水深58-1233mの間で9回行った（Table 1）。当海域は水深100mまでは急で、100-200mにかけてはだらかとなっている。さらに、200m以深では深くなるにしたがって、斜面は急となり、それは水深1500mまで続く。調査点は水深、60、100、150、200、250、300、500、1000、1200mと深度別に比較が出来るように設定した。また、調査海域の底質は水深300mまでは砂か砂泥底でそれより深い海域は泥底であった。

一方、隠岐海峡では水深71-196mにかけて4回調査を行った（Table 2）。隠岐島を含む陸棚とその斜面は、西から東に向かって少しずつ浅くなり、隠岐島の南に位置する調査地点が海峡の畔状部にあたり、水深71mである。それから東の斜面の1点は194-196mとやや深くなり、隠岐海峡の畔状部とその東の斜面にあたる海域である。調査海域の底質は陸棚上は砂底で斜面は砂泥底であった。

調査方法は日御崎沖の水深58-195mの4点と隠岐海峡の4点では、海洋研究所型生物用ドレッジ（ORI ドレッジ；間口1m；内張網目5mm）を使用し、ドレッジが海底に着底後約10分間曳網した。日御崎沖の水深255-1233mの5点ではオレゴン型のビームトロール（ORE トロール；間口3m；内張網目5mm）を使用し、トロールが海底に着底後約30分間曳網した。ドレッジおよびトロールから得られた堆積物は、船上で1mmのメッシュでふるい、その中から主に完全な個体を船上および研究室にて抽出した。このように採集された貝類の中で、日御崎沖で多数出現したツパイについては、殻高と殻幅を測定し、その後類を割って軟体部を取り出し、ベニスの有無によって雌雄を判別した。

また、日本海西部海域の物理的環境を把握するために、日御崎沖のHN-3（水深194m）とHN-11（水深1501m）の2点と、隠岐海峡の東斜面にあたるOK-6（水深477m）の1点で（Fig. 1），CTD
Fig. 1. Locations of sampling stations by trawling (×) or dredging (●) and CTD measurement stations (○).

を用いて水温，塩分，溶存酸素の観測を行った。

日御崎沖水深58-195mと隠岐海峡水深71-196mの海域

1 採集された貝類

Class Gastropoda 腹足綱
Family Fissurellidae スカシガイ科

Scutus (Aviscutum) sinensis (BLAINVILLE) オトメガサガイ
産地：OK-1（死殻，1個体）

Cranopsis pelta (A. ADAMS) ヤブレガサガイ
産地：OK-1（生貝，1個体）；OK-2（生貝，4個体）

Puncturella nobilis A. ADAMS コウダカスカシガイ
産地：CB-6（死殻，1個体）
Table 1. Trawling and dredging stations off Hino-Misaki by the R/V Tansei-Maru (KT-90-15) in 1990.

<table>
<thead>
<tr>
<th>Station</th>
<th>Date & Time</th>
<th>Position</th>
<th>Depth (m)</th>
<th>Sediment</th>
<th>Gear*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N. lat.</td>
<td>E. long.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HN-1</td>
<td>Oct. 30, 07:09</td>
<td>35°19.93'</td>
<td>132°34.84'</td>
<td>58-59</td>
<td>Sandy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>07:17</td>
<td></td>
<td></td>
<td>Mud</td>
</tr>
<tr>
<td>HN-2</td>
<td>Oct. 30, 08:36</td>
<td>35°20.40'</td>
<td>132°31.03'</td>
<td>100-102</td>
<td>Sand</td>
</tr>
<tr>
<td></td>
<td></td>
<td>08:44</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-4</td>
<td>Oct. 30, 10:20</td>
<td>35°24.09'</td>
<td>132°23.08'</td>
<td>142-144</td>
<td>Sandy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10:30</td>
<td></td>
<td></td>
<td>Mud</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13:40</td>
<td></td>
<td></td>
<td>Mud</td>
</tr>
<tr>
<td>HN-4</td>
<td>Oct. 30, 14:41</td>
<td>35°44.46'</td>
<td>132°14.59'</td>
<td>255-259</td>
<td>Sandy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15:08</td>
<td></td>
<td></td>
<td>Mud</td>
</tr>
<tr>
<td>HN-5</td>
<td>Oct. 30, 16:52</td>
<td>35°46.72'</td>
<td>132°15.42'</td>
<td>278-284</td>
<td>Sandy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17:21</td>
<td></td>
<td></td>
<td>Mud</td>
</tr>
<tr>
<td>HN-7</td>
<td>Oct. 30, 18:35</td>
<td>35°52.99'</td>
<td>132°12.32'</td>
<td>511-518</td>
<td>Mud</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19:08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HN-9</td>
<td>Oct. 30, 22:20</td>
<td>35°58.63'</td>
<td>132°09.63'</td>
<td>976-997</td>
<td>Mud</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22:56</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HN-10</td>
<td>Oct. 31, 15:17</td>
<td>36°06.43'</td>
<td>132°08.12'</td>
<td>1195-1233</td>
<td>Mud</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15:52</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*DR: Biological dredge with a 1 m span (Ocean Research Institute, University of Tokyo type). TR: Beam trawl with a 3 m span (Oregon State University type).

Table 2. Trawling and dredging stations in the Oki-Kaikyo Strait by the R/V Tansei-Maru (KT-90-15) in 1990.

<table>
<thead>
<tr>
<th>Station</th>
<th>Date & Time</th>
<th>Position</th>
<th>Depth (m)</th>
<th>Sediment</th>
<th>Gear*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N. lat.</td>
<td>E. long.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-6</td>
<td>Nov. 1, 18:58</td>
<td>35°45.58'</td>
<td>132°53.03'</td>
<td>102-103</td>
<td>Sand</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19:06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OK-1</td>
<td>Nov. 1, 16:10</td>
<td>35°45.20'</td>
<td>133°09.93'</td>
<td>71</td>
<td>Sand</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16:17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OK-2</td>
<td>Nov. 1, 14:24</td>
<td>35°49.80'</td>
<td>133°26.67'</td>
<td>93-96</td>
<td>Sand</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14:39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OK-3</td>
<td>Nov. 1, 11:38</td>
<td>35°54.87'</td>
<td>133°48.90'</td>
<td>194-196</td>
<td>Sandy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11:48</td>
<td></td>
<td></td>
<td>Mud</td>
</tr>
</tbody>
</table>

*DR: Biological dredge with a 1 m span (Ocean Research Institute, University of Tokyo type).
日本海西部海域における珊瑚礁類

Family Acmaeidae ユキノカサガイ科

Acmaea (Niveotexta) pallida (GOULD) ユキノカサガイ Plate 1, fig. 1
産地：CB-6（死殻，2個体）
備考：本種は三陸沖から北海道以北に分布の中心があり，本調査でも死殻を得たののみで，また，新潟沖でも死殻の報告がある（伊藤 1989）のように，おそらくOKUTANI（1972）が伊豆諸島で死殻の採集を述べているのと同様に，過去の寒流系の流れが卓越していた時の遺骸と考えられる。

Family Trochidae ニシキグマガイ科

Turricula corensis PEASE マキアゲエビガイ
産地：CB-6（死殻，1個体）；OK-2（生貝，1個体）
Enida japonica A. ADAMS ハグルマシタダミ
産地：OK-1（死殻，4個体）；OK-2（生貝，3個体，死殻，21個体）
Tristichotrochus aculeatus (SOWERBY) トゲエビガイ
産地：HN-2（死殻，1個体）；OK-1（死殻，1個体）；OK-2（死殻，1個体）；CB-6（死殻，2個体）
Minolita punctata A. ADAMS コンダカタダミ Plate 1, fig. 2
産地：HN-2（死殻，4個体）；HN-3（死殻，2個体）；CB-4（死殻，4個体）；OK-1（生貝，2個体）；OK-2（生貝，10個体，死殻，15個体）；CB-6（死殻，5個体）
Minolita subangulata KURODA & HABE カドコンダカタダミ Plate 1, fig. 3
産地：OK-1（生貝，1個体，死殻，2個体）；OK-2（生貝，8個体，死殻，22個体）
備考：今回採集されたMinolita属2種は，太平洋沿岸においては，コンダカタダミがやや深い海域に生息し，カドコンダカタダミと生息域が異なっている（土田 未発表）。本調査海域においても両種と同じ水深で採集された。
Machaeroplax koreanica (DALL) チョウセンシダミ Plate 1, fig. 4
産地：HN-3（死殻，5個体）
Machaeroplax sp. cf. M. marginatus (DALL) Plate 1, fig. 5
産地：HN-3（死殻，1個体）
備考：本種はDALL(1919)が，アレーシャンのAdakh Is を模式産地として報告したM. marginatusに類似しているが，採集個体は殻孔のまわりがシワ状に刻まれるので，異なる。しかし数多く比べると個体変異の可能性もある。
Microgaza fulgens DALL とカリシダミ Plate 1, fig. 6
産地：OK-1（生貝，1個体，死殻，1個体）
備考：本種は太平洋沿岸では房総半島以南から熱帯域まで分布しているが，日本海では山口県の見島や角島で報告されたのが最初である（土田•杉村 1992）。今回の採集が日本海では最北端となる。

Family Turbinidae リュウテンサザエ科

Homalopoma granuliferum NOMURA & HATAI ワニカワサンショウガイ
産地：OK-1（死殻，2個体）；OK-2（死殻，1個体）；CB-6（死殻，2個体）
Family Turritellidae キリガイダマシ科

Neohastator tsushimaensis (KOTAKA) ツシマキリガイダマシ
産地：CB-4 (死殻，1個体)

Kuroshioia fascialis (MENKE) キメキリガイダマシ
産地：HN-1 (死殻，1個体)；HN-2 (死殻，1個体)；OK-1 (死殻，1個体)

Family Eulimidae ハナゴウナ科

Balcis sp.
産地：OK-2 (死殻，1個体)

Family Capulidae カツラガイ科

Capulus japonicus A. ADAMS シワカツラガイ
産地：OK-2 (死殻，1個体)；CB-6 (死殻幼貝，1個体)

Family Trichotropidae ヒゲマキナワボラ科

Trichotropis (Iphineae) *micrinatus* (BRODERIP & SOWERBY) ネジヌキガイ Plate 1, figs. 7, 8
産地：HN-2 (死殻，1個体)；OK-1 (生貝，1個体)；CB-6 (死殻，1個体)

Family Xenophoridae クマサカガイ科

Onustus exutus (REEVE) キヌガサガイ
産地：CB-6 (死殻，1個体)

Family Ovuidae ウミウサギガイ科

Volva volva habei OYAMA ヒガイ
産地：HN-2 (死殻，1個体)

Family Naticidae タマガイ科

Tanea hiliaris (SOWERBY) ヒヨウダマガイ Plate 1, fig. 9
産地：OK-2 (死殻，1個体)

Cryptonatica clausa (BRODERIP & SOWERBY) ハイイロタマガイ
産地：HN-3 (生貝，3個体，死殻，5個体)

Cryptonatica figurata (SOWERBY) アミモンタマガイ
産地：CB-4 (生貝，1個体)

Cryptonatica sp.
産地：CB-6 (死殻，1個体)

Euspira bathyraphae (PILSBRY) オリイレシラタマガイ
産地：CB-4 (死殻，2個体)；HN-3 (死殻，2個体)

Euspira ? sp.
産地：HN-2 (死殻，2個体)
Family Cassidae トウカムリガイ科

Semicassis japonica (REEVE) ウネウラシマガイ
産地：OK-2（死殻，1個体）

Family Ficidae ビワガイ科

Ficus subintermedia (D’ORBIGNY) ビワガイ
産地：OK-1（幼貝，1個体）

Family Muricidae アッキガイ科

Haustellum sobrinus A. ADAMS ヒメホネガイ Plate 1, fig. 10
産地：HN-2（死殻破損，3個体）；OK-1（生貝，2個体，死殻幼貝，1個体）

Murex sulcatus (Murex sulcatus) multispinosus (SOWERBY) アザミミプリ
産地：HN-2（死殻，7個体）；CB-6（死殻，9個体）

Boreotrophon xestra DALI ケショウツノオリレガイ Plate 1, fig. 11
産地：HN-2（死殻，1個体）；OK-2（死殻，1個体）

Boreotrophon candelabrum (REEVE) ウノオリレガイ
産地：CB-6（死殻，1個体）

Ceratostoma (Ocenebra) fimbratula (A. ADAMS) チチワヨウウラクガイ
産地：OK-1（死殻，2個体）；OK-2（死殻，1個体）

Ceratostome (Ocenebra) aduncus (SOWERBY) イセヨウウラクガイ
産地：HN-2（死殻幼貝，1個体）

Pteropurpura (Pteropurpura) stimpsoni (A. ADAMS) シキシマヨウウラクガイ
産地：OK-1（死殻幼貝，1個体）；OK-2（生貝，1個体）

Pteropurpura (Ocinebrellus) falcata (SOWERBY) ヨウラクヒレガイ Plate 1, fig. 12
産地：OK-1（生貝，5個体，死殻，3個体，死殻幼貝，3個体）；OK-2（生貝，2個体）

Family Columbellidae タモトガイ科

Mitrella saitoi KURODA (MS.) サイトウムギガイ
産地：OK-1（死殻，1個体）

Family Nassariidae オリイレヨウバイ科

Nilotia variegata (A. ADAMS) アラレガイ
産地：OK-2（死殻，1個体）

Zeuxis castus (GOULD) ハナムシロガイ
産地：HN-2（死殻，7個体）；CB-6（死殻，5個体）

Family Buccinidae エゾバイ科

Mohnia sp. cf. *M. multicostata* HABE & ITO シワミドリホソバイ
産地：CB-4（死殻破損，1個体）

Microfusus acutispirata (SOWERBY) ヒメニシ Plate 2, figs. 1, 2
産地：HN-2（死殻，2個体）；OK-2（生貝，12個体，死殻，28個体，死殻幼貝，7個体）；CB-
6（死殻，3個体）
Buccinum kawamurae HABE & ITO ホソシジェソバイ Plate 2, fig. 3
産地：CB-4（生貝，1個体）
備考：本種は島根県沖の水深200mを模式産地として報告された（波部・伊藤 1965）。その後、兵庫県（但馬）沖の水深130-200m（伊藤 1967）と能登半島の能登沖の水深150-155m（伊藤ら 1986）で採集が述べられているのみで、他海域での採集例は今のところ報告はない。ホソシジェソバイは日本海の水深130-200m付近に生息する固有種と思われる。
Buccinum sp. A
産地：HN-3（死殻破損，1個体）
Buccinum sp. B
産地：HN-3（死殻破損，1個体）
Siphonalia cassidoriaeformis (REEVE) ミクリガイ
産地：OK-2（死殻幼貝，1個体）
Siphonalia spadicea (REEVE) マユクリガイ
産地：OK-1（死殻，1個体）; OK-2（生貝，1個体，死殻，3個体，死殻幼貝，1個体）; CB-6（死殻，5個体）
Siphonalia fusoides (REEVE) トウイトガイ Plate 2, fig. 4
産地：OK-1（生貝，1個体）; OK-2（生貝，16個体，死殻，1個体，死殻幼貝，7個体，死殻破損，2個体）

Family Fasciolariidae イトマキボラ科

Fusinus perplexus (A. ADAMS) ナガニシ
産地：OK-2（生貝，1個体，死殻，1個体，死殻幼貝，1個体）

Family Mitridae フデガイ科

Cancilla （*Cancilla* isabella） (SWAINSON) カラフデガイ Plate 2, fig. 5
産地：OK-1（死殻，1個体）
備考：フデガイ科に属する貝類は熱帯，亜熱帯地方に分布する種類が多いが、日本海での本種は山形県沖（鈴木 1979）と山口県見島沖（池田・多田 1963）に採集記録がある。

Family Olividae マクラガイ科

Amalda sp.
産地：OK-2（死殻破損—頭部のみ，1個体）
備考：本属の貝類は太平洋岸では房総半島以南に分布しているが、日本海では山口県沖の見島（池田・多田 1963）と角島（土田 未発表）周辺海域に生息が確認されている。関門海峡では初めての出現となる。
Olivella spretoides YOKOYAMA オタゾコポタルガイ Plate 2, fig. 6
産地：OK-2（死殻，6個体，死殻幼貝，1個体）
Olivella sp. Plate 2, fig. 7
産地：OK-2（死殻，2個体）
備考：殻は前種に比べて大きく、殻高は16-19mm，殻高に対して殻径が小さい。体層は丸みを帯びず細長く，殻口下端もやや拡がるが前種の老成個体とも考えられる。
Family Volutidae ヒタチオビガイ科

Fulgoraria hammillei (CROSSE) イトマキヒタチオビガイ Plate 2, fig. 8
産地：OK-1（死殻，1個体）；CB-6（死殻幼貝，1個体）
備考：日本海西南海域には本種以外に*F. (Psephaea) kaneko* (KURODA & HABE) カネコヒタチオビガイが産するが，日本海西南海域より東シナ海までと分布範囲は狭い。今回採集されたイトマキヒタチオビガイは東シナ海，豊後水道沖，日向灘にも産するが，海域による変異が大きいことから，海域ごとに亜種とされていたが（SHIKAMA 1967），福井県沖の個体を数多くみると個体変異が大きく，亜種というより個体差にすぎないであろう（江川 1986）。日本海北東部に分布する*F. (Musashia) prevostiana* (CROSSE) オオヒタチオビガイは，太平洋岸では相模湾以北から東北地方に分布する（土田 1991）。日本海に生息する本属の3種はカネコヒタチオビガイを除いて，太平洋岸にも生息する。イトマキヒタチオビガイは九州，対馬海峡から日本海西南海域へ，オオヒタチオビガイは相模湾から津軽海峡から日本海北東部へ生息域を広げたのであろう。なお，カネコヒタチオビガイについて，類似種が太平洋岸にも生息するが，類縁関係については今後の研究を待つ。

Family Cancellariidae オコモガイ科

Sydaphera spenglerianna (DESHAYES) オオコモガイ
産地：OK-2（死殻，1個体）

Neodmea nassoides (SCHEPMAN) ビロウドオコモガイ Plate 2, fig. 9
産地：OK-1（死殻，1個体）

Neodmea japonica (SCHMIDT) ニッポンオコモガイ Plate 2, fig. 10
産地：HN-3，（死殻，1個体）

Family Turridae クダマキガイ科

Elacocyna (*Splendrilla*) sp. Plate 2, fig. 11
産地：HN-2（死殻，1個体）

Paradrilittia consimilis (SCHMIDT) ヒメシャシクガイ
産地：HN-2（死殻，3個体）；CB-6（死殻，3個体）

Cytheropsis cancellata A. ADAMS ウサツココトフ
産地：HN-2（死殻，1個体）
備考：山口県の日本海側の見島沖から A. ADAMS(1865)によって記載された種であるが，日本近海では房総半島以南，日本海の陸棚上に広く分布している。

Pulsarella komakimona (OTUKA) コゲシジャクガイ Plate 2, fig. 12
産地：HN-2（死殻，1個体）

Veprecula gracilispora (SCHMIDT) ナガトゲコウシブ
産地：HN-2（死殻，1個体）；OK-1（死殻，2個体）

Propebela sp.
産地：HN-3（死殻，2個体）

Okeotoma schantarica (MIDENDORFF) ニクイロフタマンジガイ
産地：CB-4（死殻，1個体）

Okeotoma sp.
産地：OK-3（生貝，1個体）
Antiplanes contaria（YOKOYAMA）ヒダリマキイグチガイ
産地：OK-3（死殻，2個体）
備考：日本海，本州東北以北に分布する寒流系の貝である。
Etremopa streptonotus（PILSBRY）ホソノメシャジクガイ
産地：OK-2（死殻，1個体）

Family Terebridae タケノコガイ科

Punctoterebra（*Brevimyurella*）*lischkeana*（DUNKER）ヒメトクサガイ
産地：CB-6（死殻，1個体）

Family Epitoniidae イトカケガイ科

Viciniscala liliputana（A. ADAMS）コピイトカケガイ Plate 2, fig. 13
産地：HN-2（死殻，1個体）; OK-2（死殻，4個体）; CB-6（死殻，2個体）
Viciniscala sp. Plate 2, fig. 14
産地：CB-6（死殻，2個体）
Cinctiscala sagamiense（PILSBRY）サガミイトカケガイ
産地：OK-2（死殻，1個体）
Fragilopalia ? sp. Plate 2, fig. 15
産地：OK-2（死殻，1個体）
備考：本種は*F. bitaeniata* MASAHITO & HABEフタオビハプタエイトカケガイに類似するが、
体層の底面に肩角が見られないので，所属が異なるであろう。

Family Pyramidellidae トウガタガイ科

Leucotina dianae（A. ADAMS）マキモノガイ
産地：OK-2（死殻，1個体）
Syrnola sp. cf. *S. subinsecta* NOMURA コホソクチキレガイ
産地：OK-2（死殻，1個体）

Family Retusidae ヘコミツラガイ科

Rhizorus tokunagai（MAKIYAMA）トクナガマメヒガイ
産地：OK-2（死殻，3個体）

Family Scaphanderidae スイフガイ科

Adamnestia japonica（A. ADAMS）クダママガイ
産地：HN-2（死殻，2個体）; OK-1（死殻，1個体）
Clychina consobrina GOULD イトコパイコガイダマン
産地：HN-3（生貝，1個体）

Family Philinidae キセワタガイ科

Philine kurodai HABE クロダキセワタガイ Plate 1, figs. 13,14
産地：HN-1（生貝，1個体，死殻，1個体）; OK-1（生貝，1個体）
Class Scaphopoda 搶足綱
Family Dentaliidae ツノガイ科

Antalis weinhauffi (DUNKER) ツノガイ
産地：OK-2（生貝，5個体，死殻，6個体）；CB-6（生貝，1個体）

Striodentalium rhabdotum (PILSBRY) ムチツノガイ
産地：OK-2（死殻，1個体）

Episiphon makiyamai (KURODA & KIKUCHI) ロウソクツノガイ
産地：OK-2（死殻，3個体）

Laevidentalum toyamaense (KURODA & KIKUCHI) トヤマツノガイ
産地：OK-2（死殻，9個体）；OK-3（生貝，7個体）

Family Siphonodentaliidae クナキレツノガイ科

Entalinopsis intercostatus (BOISSEVAIN) ユキツノガイ
産地：HN-1（死殻，1個体）；HN-3（死殻，13個体）；CB-4（死殻，2個体）；OK-1（生貝，2個体，死殻，1個体）；OK-2（死殻，7個体）；CB-6（死殻，2個体）

Entalinopsis habatae (KURODA & KIKUCHI) ハブタエツノガイ
産地：OK-2（死殻，1個体）；CB-6（死殻，2個体）

Class Bivalvia 二枚貝綱
Family Solemyidae キヌタレガイ科

Petrasma japonica (DUNKER) アサヒキヌタレガイ
産地：OK-2（死殻半片，1個体）

Family Nuculidae クルミガイ科

Ennucula nipponica (SMITH) クルミガイ Plate 3, fig. 1
産地：HN-2（生貝，1個体）；HN-3（死殻，3個体）；CB-4（生貝，3個体）；OK-2（死殻，1個体，死殻半片，1個体）

Acila (Acila) *divaricata* (HINDS) オオキラガイ
産地：HN-3（生貝，1個体，生貝幼貝，5個体，死殻，2個体）；OK-2（死殻半片，2個体）；OK-3（生貝，10個体，幼貝，6個体，死殻半片，2個体）

Family Nuculanidae シワロウパイガイ科

Nuculana (Thestyleda) *yokoyamai* (KURODA) アラボリロウパイガイ Plate 3, fig. 2
産地：HN-2（生貝，2個体）；HN-3（死殻半片，1個体）；OK-1（生貝，1個体）；OK-2（生貝，1個体，幼貝，2個体，死殻半片，4個体）

Nuculana (Thestyleda) *pernula pernuloides* (DUNKER) シワロウパイガイ Plate 3, fig. 3
産地：CB-4（生貝，18個体，死殻，4個体）；OK-1（生貝，1個体）

Saccella sematensis SUZUKI & ISIZUKA アラスジソデガイ Plate 3, fig. 4
産地：HN-2（生貝，2個体）；OK-2（生貝，8個体，幼貝，2個体，死殻半片，16個体，幼貝
半片，3個体
Yoldia similis KURODA & HABE ナガソデガイ Plate 3, fig. 5
産地：CB-4（生貝，3個体，死殻，1個体）: OK-3（生貝，1個体）
Yoldia (Cnestorium) johanni DALL エゾソデガイ Plate 3, fig. 6
産地：OK-2（死殻半片，3個体）
備考：本種は三陸以北から北海道、クマチャッカ半島までに分布する（MATSUKUMA et al. 1991）寒流系の貝であるが、日本海西南部では初めての記録となる。死殻のみが採集されていることから、過去に寒流系の流れが卓越していたときの遺骸とも考えられる。

Family Arcidae フネガイ科

Dilvirca ferruginea (REEVE) ハゴロモガイ
産地：OK-1（生貝，1個体）: CB-6（死殻半片，1個体）
Family Glycymerididae タマキガイ科

Glycymeris (Glycymeris) rotunda (DUNKER) ベニグリガイ
産地：HN-2（生貝，11個体，死殻半片，2個体）: OK-1（生貝，1個体，死殻半片，3個体）
CB-6（生貝，19個体，死殻，1個体，死殻半片，3個体）
Family Limopsidae シラスナガイ科

Limopsis belcheri (ADAMS & REEVE) オオシラスナガイ
産地：CB-4（死殻半片，3個体）
備考：本種は従来、日本海の但馬沖で採集された*L. tajimae* SOWERBYの名前で知られていたが（SOWERBY 1914）、東シナ海産の*L. belcheri* (ADAMS & REEVE)のシノニムであることが提唱された（BERNARD et al. 1993）。日本海以外でも、房総半島以南から九州、東シナ海まで広く分布する。生息深度は陸棚斜面の水深 150-400m 位であるが、特定の海域に局地的に生息することも多い。

Crenulilimopsis oblonga (A. ADAMS) ナミシワシラスナガイ Plate 3, fig. 7
産地：HN-2（死殻半片，2個体）: OK-1（生貝，3個体，死殻半片，5個体）: OK-2（生貝，5個体，死殻半片，21個体）
備考：山口県の日本海側に位置する見島沖，63fms.を模式産地として記載された（A. ADAMS 1860）。日本海以外にも北海道西南から九州までの陸棚の水深 80-150m 位に普通に見られる。

Oblimopa japonica (A. ADAMS) シラスナガイ Plate 3, fig. 8
産地：OK-1（生貝，1個体，死殻半片，1個体）

Family Mytilidae イガイ科

Modiolus (Modiolus) margaritaceus (NOMURA & HATAI) マメヒバリガイ
産地：CB-4（生貝，39個体）

Modiolus (Modiolus) metcalfi (HANLEY) レガラスガイ
産地：OK-1（死殻半片，2個体）

Modiolus (Fulgida) flavidus (DUNKER) サザナミマクラガイ
産地：OK-1（生貝，1個体）: OK-2（死殻半片，1個体）

Modiolus (Modiolusia) elongatus (SWAINSON) カラスノマクラガイ
日本海西部海域における深海系貝類

産地：CB-6（生貝，1個体）

Family Propeamussiidae ワタゾコツキヒガイ科

Polyneumussium intuscostatum (YOKOYAMA) モトリニシキガイ
産地：HN-3（死殻半片，1個体）

Family Pectiniidae イタヤガイ科

Chlamys (Coralichlamys) *irregularis* (SOWERBY) ナデシコガイ
産地：CB-6（死殻半片，2個体）

Chlamys (Azumapecten) *squamata* (GMELIN) シキガイ
産地：OK-2（死殻半片，1個体）

Cryptopecten vesiculosus (DUNKER) ヒヨクガイ Plate 3, fig. 9
産地：HN-2（死殻半片，1個体）：OK-1（幼貝，1個体，死殻半片，9個体，死殻半片幼貝，4個体）：CB-6（死殻半片，53個体，死殻半片幼貝，9個体）：OK-2（生貝，2個体，死殻，6個体）

Pecten (Notovola) *albicans* (SCHRÖTER) イタヤガイ
産地：OK-1（死殻幼貝半片，1個体）：OK-2（死殻半片，2個体）

Family Anomiidae ナミマガシワガイ科

Monia umbonata (GOULD) シマナミマガシワガイモドキ
産地：OK-2（死殻半片，1個体）

Family Glyphaeidae ベッコウガキ科

Neopycnodonte musashiana (YOKOYAMA) ベッコウガキ
産地：HN-2（死殻半片，1個体）

Family Lucinidae ツキガイ科

Pillucina (Sydlorina) *yamakawai* (YOKOYAMA) アラウメノハナガイ
産地：OK-2（生貝，1個体）

Lucinoma annulatum (REEVE) ツキガイモドキ
産地：HN-3（死殻半片，1個体）：CB-4（生貝，1個体，幼貝，3個体，死殻半片，1個体）：OK-2（死殻半片，3個体）

Myrtea (Notomyrtea) *soyoae* (HABE) ワタゾコツキガイ Plate 3, fig. 10
産地：HN-3（死殻半片，1個体）：OK-2（生貝，1個体）

Family Ungulinidae フタバシラガイ科

Cycladicama cunningii (HANLEY) シオガマガイ
産地：OK-1（死殻半片破損，1個体）：CB-6（死殻半片，2個体）

Family Chamidae キクザルガイ科

Chama sp.
産地：OK-1（生貝，1個体）
Family Kelliidae コハクノツユガイ科

Kelliia porculus PILSBRY コハクノツユガイ
産地：OK-1（生貝，1個体）

Family Carditidae トマヤガイ科

Cardita leana DUNKER トマヤガイ
産地：CB-6（死殻半片，1個体）
Megacardita ferruginosa （A. ADAMS & REEVE） フミガイ
産地：CB-6（死殻半片，1個体）
Megacardita soyoae HABE ソウヨウフミガイ
産地：HN-2（死殻半片，1個体）
備考：本種は島根県沖の水深110mを模式産地（HABE 1958b）として報告された種であるが、日本海の固有種ではない。
Megacardita sp. Plate 3, fig. 11
産地：OK-1（生貝，7個体，幼貝，3個体，死殻半片，3個体）；OK-2（死殻半片，1個体）
備考：*M. soyoae* HABE ソウヨウフミガイに類似しているが，殻は小さく丸みを帯び，放射脈上の鱗片がでないが幼貝の可能性もある。

Family Crassatellidae モシオガイ科

Nipponocroscatella japonica （DUNKER） モシオガイ
産地：OK-1（死殻半片，1個体）；OK-2（生貝，1）；CB-6（死殻半片，1個体）
Nipponocrassatella adamsi （KOBELT） ウスモシオガイ Plate 3, fig. 12
産地：HN-2（死殻半片，1個体）；CB-4（生貝，3個体）
備考：本種は対馬沖から新潟県沖までの日本海に生息することが知られている（HABE 1952；伊藤 1989）が，太平洋沿岸の西部半島沖での採集報告がある（奥谷ら 1988）。

Family Cardiidae ザルガイ科

Nemocardium (*Keenaea*) *semarangae* （MAKIYAMA） シマキンギョガイ
産地：HN-2（死殻半片，2個体）；HN-3（死殻半片，4個体）；CB-4（死殻半片，2個体）；OK-1（死殻半片，1個体）；OK-2（死殻半片，2個体）；CB-6（死殻半片，4個体）

Family Veneridae マルスダレガイ科

Venus (*Ventriculoidea*) *foveolata* （SOWERBY） ビノスガイモドキ
産地：HN-2（生貝，4個体，死殻半片，17個体）；OK-2（死殻半片，2個体）；CB-6（生貝，3個体，死殻幼貝，1個体，死殻半片，32個体）
Placamea tiara （DILLWYN） ハナガイ Plate 3, fig. 13
産地：HN-1（死殻半片，2個体）；HN-2（死殻半片，1個体）；OK-2（死殻半片，2個体）；CB-6（死殻半片，1個体）
Veremolpa mindanensis （SMITH） アデヤカヒメカノコアサリ
産地：OK-2（生貝，1個体）
Pitar (*Pitarina*) *affine* （GMELIN） ムラクモハマグリ
産地：OK-1（死殻半片，5個体）；OK-2（死殻半片，3個体）

Pitar (Pitarina) nipponicum KURODA & HABE スナカムリハマグリ Plate 3, fig. 14

産地：HN-2（死殻半片，1個体）；OK-1（生貝，2個体，死殻半片，3個体）；CB-6（生貝，3個体，死殻半片，1個体）

Dosinia (Phacosoma) sp. マルヒナガイ

産地：HN-2（生貝，1個体）；OK-1（死殻半片，1個体）；OK-2（死殻半片，3個体）；CB-6（死殻半片，1個体）

Dosinia (Phacosoma) abyssicolum HABE フカカガミガイ

産地：HN-2（死殻半片，2個体）

備考：対馬東沖の水深143mが本種の模式産地であるが（HABE 1957），日本海の固有種ではない。

Paphia euglypta (PHILIPPI) スダレガイ

産地：HN-1（生貝，1個体）；HN-2（死殻半片，2個体）

Paphia schnelliama (DUNKER) オオスダレガイ

産地：HN-2（生貝，2個体）；OK-1（死殻半片，3個体）；OK-2（死殻半片，2個体）；CB-6（死殻半片，6個体）

Callista chinensis (HOLTEN) マツヤマワスレガイ

産地：OK-2（死殻半片，1個体）

Family Mactridae バカガイ科

Mactra (Mactra) niponica KURODA & HABE チゴバカガイ

産地：OK-2（死殻半片，4個体）

Lutraria arcuata REEVE カモジガイ

産地：OK-1（死殻幼貝半片，1個体）；OK-2（死殻幼貝半片，1個体）；CB-6（死殻幼貝半片，1個体）

Family Tellinidae マッコウガイ科

Nitidotellina nitidula (DUNKER) サクラガイ

産地：OK-2（死殻半片，7個体）

Merisca margaritina (LAMARCK) アコヤザクラガイ Plate 4, fig. 1

産地：OK-2（死殻，1個体）；CB-6（死殻半片，1個体）

Psammotreta (Pseudometis) praerupta (SALISBURY) アオサギガイ Plate 4, fig. 2

産地：OK-2（死殻半片，1個体）

Family Psammobiidae シオザナミガイ科

Gari anomala (DESHAYES) ウスベニマスオガイ Plate 4, fig. 3

産地：HN-2（死殻，1個体）；CB-6（生貝，1個体）

Family Semelidae アサジガイ科

Abra fujitai HABE ニュグウザクラガイ Plate 4, fig. 4

産地：HN-3（死殻，8個体）；CB-4（生貝，2個体）；OK-2（生貝，4個体）
Family Solecurtidae キスタアゲマキガイ科

Solecurtus sagamiensis KURODA & HABE ヤワラキスタアゲマキガイ Plate 4, fig. 5
産地：OK-2（死殻半片，2個体）

Family Solenidae マテガイ科

Solen (Solen) gordonis YOKOYAMA アカマテガイ
産地：OK-2（死殻半片，1個体）
Solen (Enissolten) luzonicus DUNKER ヒナマテガイ Plate 4, fig. 6
産地：HN-1（生貝，6個体）；CB-6（生貝，17個体，死殻半片，2個体）

Family Glossidae コウボネガイ科

Meiocardia samarangiae BERNARD, CAI & MORTON コウボネガイ Plate 4, fig. 7
産地：OK-1（死殻半片，1個体）；CB-6（死殻半片，11個体）
備考：本種は従来 M. tetragona (ADAMS & REEVE) の学名を使用していたが、その名称が他の種に先取されるため、BERNARD et al. (1993) によって新名が提案された。

Family Corbulidae クチベニガイ科

Anisocurbula scaphoides (HINDS) サマベニガイ Plate 4, fig. 8
産地：OK-1（生貝，1個体，死殻半片，3個体）
Anisocurbula nipponica HABE イナカクチベニガイ
産地：OK-2（死殻，1個体）
Minicurbula minutissima (HABE) チビクチベニガイ
産地：HN-3（死殻半片，1個体）

Family Hiatellidae キスマトイガイ科

Hiatella orientalis (YOKOYAMA) キスマトイガイ
産地：OK-2（生貝，1個体）

Family Pandoridae ネリガイ科

Pandorella pseudobilirata (NOMURA & HATAI) ウスネリガイ Plate 4, fig. 9
産地：OK-1（生貝，1個体）；CB-6（生貝，1個体）

Family Myochamidae ミツカドカタビラガイ科

Myadora proxima SMITH ミツカドカタビラガイ Plate 4, figs. 10, 11
産地：OK-1（生貝，1個体，死殻半片，1個体）；OK-2（生貝，1個体，死殻半片，1個体）
CB-6（死殻半片，2個体）
備考：本海域で採集された個体で、Plate 4, fig. 11 の個体は明らかに M. proxima SMITH であるが、成形個体と思われる Plate 4, fig. 10 の半片は M. japonica HABE ヒロカタビラガイに酷似している。同種かどうか今後の研究を待つ。
Family Periplomatidae リュウグウハゴロモガイ科

Periploma plane OZAKI リュウグウハゴロモガイ Plate 4, fig. 12
産地：CB-4（生貝，2個体）
備考：日本海では新潟県沖と佐渡島沖の水深124-298mで採取されたのが最初の記録である（伊藤1989）。日御崎沖が日本海西部で初めての報告となる。

Family Laternulidae オキナガイ科

Laternula (Laternulina) anatina (LINNAEUS) オキナガイ Plate 5, fig. 1
産地：HN-1（生貝，1個体，生貝破損，2個体）

Family Poromyidae スナメガイ科

Poromya flexuosa YOKOYAMA スナメガイ Plate 5, fig. 2
産地：OK-1（生貝，1個体）：OK-2（生貝，1個体，死殻半片，2個体）

Family Cuspidariidae シャクシガイ科

Cuspidaria nobilis (A. ADAMS) オオシャクシガイ Plate 5, fig. 3
産地：CB-6（死殻半片，4個体）

Cuspidaria hindsoniana (A. ADAMS) ツギノシャクシガイ Plate 5, fig. 4
産地：OK-2（幼貝，1個体，死殻半片，2個体）：CB-6（死殻半片，1個体）

Cuspidaria macrorhynchus SMITH エナガシャクシガイ
産地：CB-6（死殻半片，1個体）

Cardiomya (Cardiomya) gouldiana (HINDS) ヒメシャクシガイ
産地：OK-2（生貝，5個体，死殻半片，7個体）

2 本海域における貝類相の特徴

日御崎沖の水深58-195mで採集された貝類は腹足綱34種，掲足綱1種，二枚貝綱25種の合計69種で，高い海域の水深71-196mでは腹足綱57種，掲足綱6種，二枚貝綱60種の合計123種である。200m以浅の採集全体で見ると155種（腹足綱77種，掲足綱6種，二枚貝綱72種）で，それ以深で採集された37種（後述）に比べると種類数も多い。しかし，200m以深で採集された貝類がほとんど生貝であったのに比べて，200m以浅では約100種の貝類が死殻のみの採集である。当海域で採集された種には寒流系の貝類もあり，それらは水深100m以深のCB-4，HN-3，OK-3に集中している。また，これらの密度には太平洋岸では漸深海帯に生息する種も多々見られ，その中には水深100m前後に出現する種もある。水深100m以浅のHN-1，HN-2，CB-6，CB-4，OK-1，OK-2では，日本に広く分布する温帯域種の貝類が多い。次には，太平洋岸では房総半島以南に，日本海では能登半島以南に生息する暖温帯域種が続き，少数ではあるが寒流域や亜熱帯域に分布する貝類がみられ，詳細については後で述べるが，当海域で採集された貝類には様々な分布型がある。

日御崎沖水深255-1233mの海域

1 採集された貝類
Class Gastropoda 腹足綱
Family Cocculinidae ワタゾコシロガサガイ科

Cocculina japonica DALL ウタゾコシロガサガイ Plate 5, fig. 5
産地：HN-9（生貝，1個体）；HN-10（生貝，8個体）
備考：沈木に付着する本種は、日本海の佐渡島沖の水深200fms.を模式産地として記載された（DALL 1907）。日本海全域と、太平洋岸では三陸沖から北海道にかけて分布し、中部太平洋の暖深海帯には同属の別種が生息している。ワタゾコシロガサガイの生息深度は、50–300mに採集記録があるが（波部・伊藤 1965；伊藤 1967；土田・石田 1977；伊藤 1985；伊藤ら 1986）。本調査海域では水深976–1233mで採集されていることからみても、生息深度範囲はより広がることと考えられる。

Family Naticidae タマガイ科

Cryptonatica clausa (BRORDER & SOWERBY) ハイロタマガイ Plate 5, fig. 6
産地：HN-5（生貝，5個体，幼貝，25個体，死殻，1個体）；HN-7（生貝，2個体，死殻，1個体）

Euspira pallida (BRORDER & SOWERBY) ウスイロタマツメタガイ Plate 5, fig. 9
産地：HN-5（生貝，5個体，幼貝，3個体）

Euspira sp. A Plate 5, fig. 7
産地：HN-9（生貝，5個体，死殻，2個体）

Euspira sp. B Plate 5, fig. 8
産地：HN-5（生貝，2個体）

Family Buccinidae エゾバイ科

Lussivolttopius furukawai (OYAMA) キジビキカミオボラ Plate 6, fig. 5
産地：HN-5（生貝，1個体，幼貝，1個体）
備考：日本海にのみ生息する近似種は数種類あるが（千葉・小菅 1979；増田・波部 1987）。報告種は日本海に分布する型で（大山 1951）、他の種類は寒流域の北海道、三陸沖、ベーリング海にも生息が知られている。

Buccinum striatissimum SOWERBY エッチェウバイ Plate 6, fig. 4
産地：HN-5（生貝，3個体，死殻，3個体）

Buccinum tenuellum KURODA in TERAMACHI オオエッチェウバイ Plate 6, figs. 2, 3
産地：HN-10（生貝，3個体）

Buccinum tsukai KURODA in TERAMACHI ツバイ Plate 7, figs. 1–9
産地：HN-5（幼貝，7個体，幼貝死殻，8個体）；HN-7（生貝，7個体，幼貝，4個体，死殻4個体）；HN-9（生貝，22個体，幼貝，37個体，死殻，15個体）；HN-10（生貝，17個体，幼貝，6個体，死殻，27個体）
備考：今回の調査海域では水深278–1233mの範囲で採集され、個体数も115個体と最も多く、成貝では殻頂部が浸食されて明らかではないが、幼貝では原殻が観察された。原殻は長径0.75mmと大きく、1段階で、殻表は平滑のように見えるが、細かいちりん状の螺肋におおわれる。全体はドーム型で丸く、殻頂は巻き始めの部分が埋没して短い。原殻に続く初期幼層には明らかな縦肋をみられるが、巻下がりにつれて縦肋を消失して、殻表は平滑になる。ツバイは日本海全
域に広く分布し、深度分布範囲も広い固有種である。

Mohnia vernalis DALL ミドリホソバイ Plate 6, fig. 7
産地：HN-5（生貝，15個体）

Mohnia sp. Plate 6, fig. 8
産地：HN-7（死貝，1個体）；HN-9（生貝，90個体，幼貝，9個体）
備考：ミドリホソバイの幼貝にも見えるが、殻は小さく、殻長15mm以上の個体は見られない。
殻表には明らかな縦肋が次体層まであり前種とは異なる。原殻や幼層部は浸食されて明らかでない。

Helicofusus aurantius DALL ニクイロツムバイ Plate 6, figs. 6, 10
産地：HN-5（生貝，10個体，死殻，1個体）

Neptunea intersculpta (SOWERBY) エゾボラモドキ Plate 6, fig. 1
産地：HN-5（生貝，3個体，幼貝，1個体）；HN-7（生貝，2個体）

Neptunea sp. Plate 6, fig. 9
産地：HN-9（生貝，5個体）
備考：本種の殻長は14mmと小さく、エゾボラモドキの幼貝とも考えられるが、殻表に次体層が3本、体層部には5本のはっきりした縦肋を作る巻き、幼層部には縦肋があらわれる。

Family Turridae クダマキガイ科

Curtitoma becklemiteshevi BOGDANOV Plate 8, fig. 3
産地：HN-5（生貝，2個体）

Oenopota candida (YOKOYAMA) コウシフタマンジガイ Plate 8, fig. 6
産地：HN-5（生貝，7個体，死殻，3個体）

Obesotoma solida (DALL) Plate 8, fig. 4
産地：HN-5（生貝，6個体，死殻，1個体）

Obesotoma hokkaidoensis (BARTSCH) ミドリフタマンジガイ Plate 8, fig. 7
産地：HN-5（生貝，12個体，死殻，8個体）；HN-9（生貝，57個体，死殻，1個体）

Obesotoma sp. cf. O. simplex (MIDDENDORFF) Plate 8, fig. 5
産地：HN-9（生貝，3個体）

Prophebela sp. A Plate 8, fig. 9
産地：HN-5（生貝，4個体）；HN-7（死殻，1個体）

Prophebela sp. B
産地：HN-5（生貝，1個体）

Prophebela sp. C
産地：HN-5（生貝，1個体）

Prophebela sp. D Plate 8, fig. 8
産地：HN-9（生貝，1個体）

Rectiplanes sanctioannis (SMITH) エゾイグチガイ Plate 8, fig. 2
産地：HN-5（生貝，2個体）；HN-7（生貝，2個体）

Afonia cirrinita (DALL) ヤゲンイグチガイ Plate 8, fig. 1
産地：HN-5（生貝，2個体）；HN-7（死殻，4個体）
Family Scaphandridae スイフガイ科

Cylichna consobrina Gould イトコカイコガイダマシ Plate 5, fig. 10
産地：HN-5（生貝，1個体；死殻，1個体）

Class Scaphopoda 椎足綱
Family Dentaliidae ツノガイ科

Laevidentalium toyamaense (Kuroda & Kikuchi) トヤマツノガイ Plate 5, fig. 11
産地：HN-5（死殻，3個体）；HN-7（生貝，1個体，死殻，1個体）；HN-9（生貝，1個体）

Class Bivalvia 二枚貝綱
Family Malleidiidae スミソメデガイ科

Neilonella sp. cf. *N. japonica* Okutani ヒッポンハトムギソデガイ Plate 9, figs. 6, 7
産地：HN-9（生貝，98個体，死殻半片，1個体）
備考：本種は太平洋岸に生息するヒッポンハトムギソデガイに比べて小さく，殻長は3mm以下で，数も前半が6，後半に8と少ない，幼貝の可能性もあるが，採取個体の大きさがそろっていることから別種と思われる，なお，太平洋岸のヒッポンハトムギソデガイは水深700m以深に生息し，報告種も水深576-997mから採集されていることから，*Neilonella* 属の日本海の深海性固有種とも考えられる。

Family Nuculanidae シワロウバイガイ科

Robaia robai (Kuroda) ロウバイガイ Plate 9, figs. 1-4
産地：HN-5（生貝，42個体，幼貝，15個体，死殻，5個体，死殻半片，8個体）；HN-7（生貝，11個体，幼貝，3個体，死殻，1個体）；HN-9（生貝，3個体，死殻半片，1個体）
備考：ロウバイガイは富山湾を模式産地として報告された種で（黒田 1929），生息深度範囲がシワノウバイ同様に広く，本調査では水深278-1295mの範囲で採集された。しかし，HN-9(976-997m)と最深のHN-10(1233-1295m)で得られた個体群は殻長に対して，殻高が高く（Plate 6, figs. 3, 4），殻幅も厚くなり，全体に丸みを帯び他の調査点の個体群とは異なる。

Portlandia (Portlandia) toyamaensis (Kuroda) トヤマソデガイ Plate 9, fig. 5
産地：HN-5（生貝，12個体，幼貝，12個体，死殻，2個体，死殻半片，10個体）；HN-7（生貝，3個体，死殻，1個体）
備考：本種は富山湾を模式産地として記載された（黒田 1929），日本海の深海帯の固有種である。

Family Mytilidae イガイ科

Musculus (Musculus) sp. cf. *M. laevigatus* (Gray) ハブタエタマエガイ
産地：HN-5（生貝，4個体）
備考：採集個体はすべて殻長5mm以下で小さい。
日本の西海岸における産深海系貝類

Family Propeamussiidae ワタゾリツキヒガイ科
Polyneammussium alaskense（DALL） アラスカニシキガイ Plate 9, fig. 8
産地：HN-5（生貝，1個体）；HN-7（生貝，40個体，死殻，8個体）

Family Thyasiridae ハナシガイ科
Conchoele disjuncta GABB オウナガイ
産地：HN-4（生貝，1個体）；HN-5（死殻半片破損，1個体）；HN-7（死殻半片破損，1個体）
Thyasira（Thyasira）tokunagai KURODA & HABE ハナシガイ Plate 9, fig. 10
産地：HN-9（生貝，1個体）
備考：本種はビームトロールに入網したのではなく、同地点で行ったボックスコアラー型採泥器で採集された。

Maorithyas mijadii（HABE） ウスハナシガイ Plate 9, fig. 9
産地：HN-9（生貝，34個体，死殻，2個体）

Family Poromyidae スナメガイ科
Poromya castanea HABE クリイロスナメガイ Plate 9, fig. 11
産地：HN-5（生貝，9個体，幼貝，8個体，死殻，2個体，死殻半片，5個体）；HN-7（生貝，2個体）
備考：本種は静穏の水深307mを模式産地として報告された（HABE 1952），日本海の固有種である。

Family Cuspidariidae シャクシガイ科
Cuspidaria（Nordoreaera）trosaetes DALL アッシャクシガイ Plate 9, fig. 12
産地：HN-7（生貝，1個体）
備考：本種は日本海の水深325mを模式産地として記載された（DALL 1925），日本海の産深海帯に生息する固有種である。

Cardiomya（Cardiomya）gouldiana（HINDS） ヒメシャクシガイ Plate 9, fig. 13
産地：HN-5（生貝，3個体）；HN-7（生貝，1個体）

2 本海域における種類相の特徴
日御崎沖の水深255-1295mで採集された種類は、腹足綱26種，二枚貝綱10種の合計37種である。そのうち，種名が確定できなかった10種を除いて，12種は寒流域に生息の中心がある種類で，北海道や三陸沖の太平洋側にも生息している。キジビキカミオボラ，エッチュウガイ，オオエッチュウガイ，ツバガイ，ロウバイガイ，トマソテガイ，クリイロスナメガイ，アッシャクシガイの8種は日本海の固有種である。また，調査海域で採集された種類の中でハイイロタマガイ，ヤケノイグテガイ，オウナガイ，ハナシガイ，ウスハナシガイ，ヒメシャクシガイ等は太平洋側の北海道，三陸沖以外にも，四国沖，駿河湾や相模湾の漬深海帯まで分布している。このように，当海域で生息している種類の大部分が寒流系の水温の低い環境に適応した種類である。さらに，これらの深度で採集された種類は，腹足綱ではタマガイ科，エゾパイ科，クダマガイ科，二枚貝綱ではロウバイガイ科，ハナシガイ科の5科が種類数，個体数を多くを
3 本海域で最も多く採集されたツバイの特徴

今回の調査では、HN-5、HN-7、HN-9、HN-10の4調査点の水深278-1233mでツバイが採集された。この採集深度範囲は、中原ら(1978)が本海域近くで行ったかご網採集による500-1250m、および加藤(1979)が日本海中部の広範囲の海域で行ったトール調査による419-1250m かご網調査による250-1248mに良く一致した。採集個体数も115個体と最も多くかったため、それらの採集点のうち、HN-5を除く3調査点のサンプルを中心に、殻長組成、形態などの解析を行った。最も浅い水深278mのHN-5では、殻長6.0-19.2mmまでの12個体（平均：10.8mm、標準偏差：4.1mm）が採集されたが、全てが幼貝であったこと、一部標本の保存状態が悪く雄雌の判別ができなかったことにより、他の採集点と同様な解析には用いなかった。

HN-7、HN-9、HN-10および3調査点を合計した雄雌別殻長組成をFig. 2に示した。水深約1000mのHN-9で最も多く採集され、殻長10mm前後にモードを持つ小型個体が卓越し、約20mm以下のグループとそれ以上の殻長40mm前後にモードをもつものが明瞭に区別された。大型個体の殻長組成だけから見ると、中原ら(1978)と同様な結果であったが、本調査でのモードが若干小さい傾向が認められ、その理由の一つとして採集方法の違いと考えられる。小型個体では雌の比率が若干高く、55mm以上の個体は全て雌であった。特に、この傾向は3調査点を合計したものでは顕著に現れている。本種が属するエゾバイ属の種は、雌が雄よりも大型になることがよく知られており(五十嵐・波部 1991)，その現象と良く一致している。HN-

![Fig. 2. Size frequency distributions of B. tsubai collected at HN-7, HN-9, HN-10 and all three stations pooled.](image-url)
Table 3. Analysis of covariance for fitted regression lines of shell width (mm) on shell height (mm) in B. tsubai.

<table>
<thead>
<tr>
<th>Combination</th>
<th>Slope</th>
<th>Y-intercept</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F-value</td>
<td>Probability</td>
</tr>
<tr>
<td>Between sexes(^1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male vs. Female</td>
<td>0.1737</td>
<td>NS</td>
</tr>
<tr>
<td>Between sizes(^2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><20 mm vs. ≥20 mm</td>
<td>17.1788</td>
<td>(P < 0.001)</td>
</tr>
<tr>
<td>Between stations(^3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HN-7 vs. HN-9</td>
<td>0.3426</td>
<td>NS</td>
</tr>
<tr>
<td>HN-7 vs. HN-10</td>
<td>1.7628</td>
<td>NS</td>
</tr>
<tr>
<td>HN-9 vs. HN-10</td>
<td>3.3201</td>
<td>NS</td>
</tr>
</tbody>
</table>

\(^1\) Specimens larger than 20 mm in shell height, collected at only one station (HN-9) were used.

\(^2\) Specimens collected at 3 stations were pooled and calculation was made without distinction of sex. Size indicates shell height.

\(^3\) Specimens larger than 20 mm in shell height were used and calculation was made without distinction of sex.

Fig. 3. Relationship between shell height and shell width for B. tsubai at HN-9 where the maximum number was collected. Regression lines were separately calculated for individuals <20 mm and ≥20 mm in shell height without distinction of sex because a statistical test showed no significant difference between sexes.
い深度範囲で、幼貝のみを扱って論議しているので、本研究と比較することはできない。さらに、前述したように最も浅い採集点であるHN-5では小型個体のみが採集されているので、このような移動があるかどうかは今後の調査を待たなければならない。性判別はペニスの有無によって行ったが、殻高20mm以上の個体では、生殖腺の発達が認められるものもあり、ペニスも大型で判別が容易であった。しかし、20mm以下のもでは生殖腺が未発達で、ペニスの存在の確認が難しく、そのため小型個体での性比の違いを導いた可能性もある。このような性判別時での観察と小型個体のサイズ分布パターンから、殻高20mm以上で幼貝から成貝になるものと考えられる。

パラメーターとして殻高と殻幅を用い、雌雄、成長段階、生息水深に伴う形態の違いを調べた(Table 3)。まず、最も採集個体の多かった調査点であるHN-9で、性判別が正確な殻高20mm以上の個体を用いて、雌雄による違いを検定したところ、統計的に有為な差が認められなかった。次に、3調査点の全採集個体で、雌雄の別なく、殻高20mm以上と以下の個体で比較したところ、殻高に対する殻幅の関係式で、有為な差が認められた(Fig.3)。伊藤(1983)は、幼貝と成貝との間に殻高／殻幅(殻径)比で連続しているという異なる意見を述べているが、厳密な殻高20mm以上と以下の個体での比較をしていない。以上の検定結果を踏まえて、雌雄の区別をせずに殻高20mm以上の個体を用いて、3調査点間の比較を行った。その結果、HN-7とHN-9との間には差が認められなかったが、これら両調査点とHN-10との間には差が認められた(Fig.4)。比較する調査点間において、サンプル数が少なく、サイズ範囲に違いがあるため、さらに詳細なサンプリングに基づいた標本での解析が必要であるが、水深約1000mを境とした生息深度による形態変異の可能性が考えられる。
日本海西部海域における深海系貝類

日本海西部海域における貝類の分布特性

1 日本海固有種の深度分布

今回の調査で採集された日本海の固有種10種の深度分布をみると、キジビキカミオポラ、エッチュウバイ、トヤマソデガイ、クリヨスナメガイ、オツサクシガイは水深278-518mのHN-5とHN-7で採集されている。エッチュウバイを除く4種の深度分布については、波部（1961）や奥谷ら（1988）の断片的な記述があるにすぎないが、その分布記録は今回採集された200-600mの範囲にある。エッチュウバイは水深278-284mのHN-5でしか採集されなかったが、沖山（1967）、中原（1977）、加藤（1979）、奥谷ら（1988）は200-600mをやや広い深度分布範囲を報告している。この場合、カガワイと記述してある例を、分類的検討により同種であるとの判断から、すべてエッチュウバイとして扱った。オオエッチュウバイは今回の調査では最深の水深1195-1233mのHN-10で採集されている。従来の深度分布記録は350-1500m位といわれているが、沖山（1967）；加藤（1979）；奥谷（1988）、今回の採集記録、中原（1977）、東京大学海洋研究所の白風丸による若狭湾の調査記録（KH-82-2、斎藤 1984；土田 未発表）と渡辺丸による奥尻島沖の採集記録（KT-92-12、土田 林 未発表）からみると、分布の中心は水深750-1200m付近ににあるようである。また、加藤（1979）の述べた浅い場所での採集記録は、大和丸、北大和丸、新居岐丸などの日本海大陸棚面からはずれた場から得られており、これらの深度分布については大陸斜面と異なることも考えられる。ツバイやツバイガイは水深278-1233m（HN-5、HN-7、HN-9、HN-10）の広い範囲で採集される“広深度分布”の種である。また、固有種としては唯一200m以浅に生息するホソシエソバイもある。

2 水深150-200m以深の貝類

前述した固有種に加えて、寒流流や温水の低い漸海海域に分布の中心がある種も多く出現する。なかでも、ボサコジョガサガイ、Neptunea sp., ミドリフタマンジガイ、Obesotoma sp. cf. O. simplex, Propebela sp. D, Neionella sp., ハナガニ, ウスハナガニの8種は水深1000m付近に生息しているが、それら以外の種はすべて、水深500-600m以浅に生息域がある。しかし、なかにはミドリフタマンジガイ、トヤマツノガイのようにそれぞれ500-1000m、280-1000mまでと生息範囲の広い種もある。また、エゾガラビモドキは沖山（1967）、加藤（1979）によると水深250-1250mまで採集記録があり“広度分布性”の種に挙げているが、今回の調査海域では水深278-718mの間にしか出現していない。東京大学海洋研究所の白風丸や渡辺丸による若狭湾、三陸沖や鹿島灘における調査でも、本種は水深200-800m付近で採集されている（土田 未発表）ことから、分布の中心は水深200-800m付近にあると考えられる。

前述のホソシエソバイのように、水深200mより浅い海域か、その前後の深さにもチョウセシングタダミ、ツシマキガイダマンシ、ニクイフタマンジガイ、ヒダリマキガイダガイ等の寒流海域に分布の中心を持つ種が出現する。同様に寒流域のコウダガスカンガイ、ユキノカサガイ、ケショウツツワリガイ、エゾソデガイ等が水深100m前後にも生息が見られる。その中でもユキノカサガイやエゾソデガイは死骸のみの採集であった。従来、ユキノカサガイは北海道や三陸沖の潮間帯に生息する種であり、山口県北部の貝類を報告した池田・多田（1963）は見島近海での採集を報告しているが、おそらく死骸であろう。また、エゾソデガイは北海道や岩手県大槌湾沖では水深40-100m付近で採集されるが（MATSUKUMA et al. 1991；土田・黒住 1993），日本海での採集記録は今までになく、朝鮮半島の西に位置する黄海の水深28-82m（山下 1978）での採集が報告されているにすぎない。そのため、これら2種は過去に寒冷であった時の遺骸で
ある可能性もある。水深150-200mには、クルミガイ、オオキラガイ、ナガイダガイ、オオシラスナガイ等のように、太平洋岸では潮深帯域に生息する種が多くみられる。特に、離岐海峡ではクルミガイ、ヒョウダマガイ、ムチノガイ、リュウグウザクラガイ、エナガシャクチャガイ等は水深100m付近の浅い海底まで出現する。これらの太平洋岸の潮深帯域にも生息している貝類は、日本海西部海域での生息深浅は太平洋岸より深い傾向がある。このような寒流域あるいは太平洋の潮深帯域に分布する種は、200m以浅で採集された全種類数に対して、その割合は後述する暖流域、暖帯域帯種の半分以下で15％を占める。

以上のように、今回の調査および断片的な既存の報告により、水深150-200m以深に生息する貝類の深度分布を整理すると、1) 250-1200mまでに生息する“広深度分布性”の種、2) 1000m付近かそれ以深に生息する深海性の種、3) 200-600m付近に生息し、寒流域の北太平洋や一部は四国沖までの潮深帯域と共通する種、4) 150-200m付近かそれより浅い海域に生息する暖流域に分布の中心があるか、太平洋岸の潮深帯域と共通する種の4つに分けることができる。

3 水深150-200m以深の深度分布と環境要因

これらの深度区分は、日本海の水塊構造と関連がある。日御崎沖の水深194m(HN-3)、1501m(HN-11)や廃岐海峡の水深477m(OK-6)で観測したCTDによる水温の記録をみてても、日御崎沖のHN-3では水深125mで14.9℃、150mで8.9℃、183mで3.3℃、HN-11では125mで13.9℃、150mで5.3℃、200mで1.8℃、OK-6では125mで13.9℃、150mで10.1℃、200mで3.8℃となり、水深150-200mの間で大きく水温は変化する。森安(1972)は、日本海の海洋構造として、表層と日本海固有水である深層の大きさ2つに分け、さらに、表層を暖流域と寒流域の異なった2つの性質に分けることができると述べている。つまり、今回の調査海域の水深200m以深は暖流系の表層水の影響をうけない深度で、水深150-200mはその移行帯で下層の冷水の影響を少なからず受けている。この水深に出現する貝類は、日本海固有種のホッソウエゾバイを除いて、太平洋岸ではもっと深い潮深帯域に生息する種が多い。お互いに類似した種が出現する紀伊水道沖合海域の水温をみると、水深150mで10℃台、200mで9℃台となり、日本海の水深200mの水温の4℃以下になるのは紀伊水道沖では水深750mより深い深度である(土田 1988；KT-84-12, St. 30, DBTによる観測)

次に水深200-600mまでに生息する貝類は、“広深度分布性”の種以外に、キジビキカリオポラ、エッチュウバイ、トヤマソウガイ、クリロスナガイ等の日本海固有種が見られる。これらの生息域の水温は200mで1.8℃、500mで0.34℃、600mで0.28℃(HN-11)で、これらの水深帯では、水温からみて、表層層の水の日本海固有水をさらに中・深・底層水に区分した尾形(1972)に従えば、固有水最上部の中層水に占められているのであろう。これら中層水に生息する貝類は固有種を除いて、寒流域に生息の中心のある種が多く、それらは20種もある。しかし、その半数にあたるミドリホソバイ、エゾポラモドキ、ニツシロツマバイ、エゾイグチガイ、アラスカニシガイは太平洋岸では三陸沖から鹿島灘まで、さらに、ハイアイロマガイ、ヤゲンイグチガイ、アウトガワイ、ヒメシャクチャガイは相模湾から駿河湾、四国沖にまで分布し生息域を南方に延びている。大山(1951)は太平洋岸と日本海の中層水の貝類は共通種が少ないことを述べ、その理由として、日本海の中層水の流れが遅いために分布の拡大が行われにくく、また、たとえ新分布域が確立されても異なる海洋環境下で隔離的状況に囲まれるので、別の大型に分化することを示している。なお、日御崎沖の調査点では、この200-600mの水深にはズワガイが、以深にはペニズワが生息することが別に報告されており(Yoshio and HAYASHI 1994)、他の底生動物群についてもこの深度分布境界が存在することを示している。
日本の海西部海域における漸深海系貝類

水深1000m付近は、水深200m以深を占める日本の海固有種の多くだが、水温、塩分、溶存酸素などの微細な物理的環境変化（森田 1972；Nishimura 1969）がある。特には他の生物の密度分布構造（尾形 1972）から、これ以浅の深層水と以深の底層水との境界として取り上げられている。この水深および以深で採集された種類は、「広度分布性」の種を除いて、種数が確定し太平洋岸の漸深海帯にも出現するタタリオシロガサガイ、ハナシガイ、ウスハナシガイがある。その生息深層は太平洋岸のそれより深い傾向がある。今回日御崎沖で得た Neptunia sp. や Neionella sp. は種名が確定できなかった。これらは、いずれも微小な貝で、今後より詳細な研究を行うのを待たなければならないうちに研究者の述べる淡海丸で得た Neionella sp. や Neionella sp. ともに Cylindrical に属する腹足類、Delectopecten sp., ハナシガイ、ウスハナシガイに類似したハナシガイ科（Thyasiridae）等の微小な貝類を含めている（土田・林未発表）ことから、これら2種も新しい固有種の可能性がある。近年 OKUTANI and IZUMIDATE（1992）は日本海の大和堆の水深1150mと330-375mから、微小な二枚貝類3種を新種として報告したことも考え合わせると、今後細かい目合の網を使用すれば、1000m以深で微小な漸深性の貝類の生息が新たに確認されることが示唆される。このような種は、いままでに知られていない三維海の漸深海帯下部のMenuItem類に加わることになるが、いずれにしても、同一あるいは類似する種が日本海と太平洋岸の漸深海帯に同様に生息していることが考えられる。

水深250-1200mまでの広い深度帯にわたって生息する種は、日本の海固有種のツバイとロウバイガイである。それらの種は日御崎沖では水温0.87℃から0.16℃の間に生息し、それらの深度差は約0.7℃で極めて小さいが、その生息水深帯は水平距離にして45km以上の広がりをもっている。ツバイは調査海域で最も多く採集され、すでに述べたようにその生息帯は水深1000m付近を境として差異が認められるようであり、特に水深の深いHN-5では幼貝しか見ることはなかった。本種の成体は0.75mmと大きさから浮遊期を持たない直達発生の可能性もある。そのような分散能力におよぶ個体群の交流は少なく、深度差が大きくなるほど分化する傾向が強く表われる。また、ロウバイガイについても、同様に水深1000m付近を境にして形態に大きな差異が認められる。魚類においても、日本海の固有種であるノロゲンが水深200-500mと1000-1700mで形態が異なることが知られている（堀越 1984；沖山未発表）。オオエチュウバイは前に述べたように“広度分布性”ではなく、他海域と比べても大きな形態の変異は認められない。

4 水深150-200m以浅の貝類

日御崎沖や隣接海域の水深150-200m付近からそれより浅い水深で採取され、寒流域に分布の中心がある貝類や、太平洋岸の漸深海帯に生息している貝類については既にとりあげた。そのような貝類の中、特に水深100mあたりに出現するものは、約8種が見ている。ここでは主に、表層水の影響下に100m前後かそれ以上に出現する暖・温带性要素の強い貝類の分布現象について議論を進めることとする。

最も多く出現するのはコナダサタダミ、ネジスガイ、イセヨウラクガイ、ハナムシロガイ、アラポリラウバイガイ、ナミシラスナガイ等のように、日本海全海域、三陸沖から九州にいたる太平洋岸の本州周辺海域の漸深海帯下部に分布の中心がある温帯種である。これらは、200m以浅で採集された種類数の43%を占めている。日本産タマキガイ類の分布を述べた松岘（1983）では、温帯西太平洋種（日本・韓国種）として扱っている。しかし、今回述べる温帯域種は太平洋岸の銚子から三陸まで分布が切れる事はない。また、温帯域種の中にもOK-1で
採集されたイトマキヒタチオビのように、豊後水道、東シナ海、日本海では福井県以南の狭い分布を示している種もある。この温帯域種に属するコンサカンダミとカドコンサカンダミは同属の貝類であるが、水深 71-96m の調査点（OK-1, OK-2）で採集されている。しかし、太平洋沿岸の大豊後水道沖（土田 1990）、三重県の大名崎沖や豊後水道沖合では、コンサカンダミの生息水深は 80m 前後以深、カドコンサカンダミは 50-80m 位までの砂底生息し、同時採集されることはない（土田 未発表）。また、水深 102-130m の CB-6 ではコンサカンダミしか採集されず、太平洋岸とでは分布様式が異なっているようである。

当海域ではヒガイ、ヒメホネガイ、ヒヨクガイ等の暖帯域種が出現し、それは全体の 39%を占めている。ウミウサギガイ科の系統分類をまとめた CATE(1973)によると、ヒガイは太平洋岸では銭子から台湾まで分布している。日本海では伊藤ら(1986)が能登半島の西側海岸からの採集を報告している。インド・太平洋のアッキガイ属とサツマップリ属を研究した PONDER and VOKES(1988)によると、ヒメホネガイは各総半島から南から鹿児島湾、東シナ海、能登半島以南に分布している。ヒヨクガイの分布は、日本近海産のヒヨクガイ属の自然史と進化を研究した HAYAMI(1984)によれば、太平洋岸では福総半島から南から鹿児島湾、東シナ海まで、日本海では能登半島以南とされている。これに、研究の進んでいる 3 種の分布様式から、日本海の浅海帯下部に生息する暖温帯域種は、能登半島、福総半島より北には分布せず、南は東シナ海台湾まで分布するものと言える。さらに、ヒカリシダミのように赤道を越えて分布する種（土田 未発表）、ヒサイギ、ピロドクコロガイ、ハナガイのようにフィリピン、インドネシアでも生息している (SCHEMPAN 1908；SPRINGSTEEN and LEOBREDA 1986；DHARMA 1992) 亜熱帯域種と思われる貝類もある。このような種類はわずかに 3-4% を占めるにすぎない。

以上のように、日御崎沖と隠岐海峡の水深150-200m 以浅の貝類は、150-200m 付近かそれより浅い海域に生息する寒流域に分布の中心があるか、太平洋岸の瀬戸内海と共通する種を除くと、1）100m 以浅に生息する温帯域種、2）100m 以浅に生息する暖温帯域種、3）100m 以浅に生息する亜熱帯域種に分けることができる。

文献

大山 桂（1951）本邦（内地）の太平洋側と日本海側の中層水の貝類群。日本生物地理学会報，15(2)，1-4。

鈴木広男（1979）山形県海産無脊椎動物。たまきの会，山形市，370 pp.
多田武一（1964）見島産貝類目録。山口県教育委員会（編）見島学術総合調査報告，136-172.
千葉薫男・小菅貞男（1979）北太平洋の貝類（1），カミオボラ属。東京貝類学会，東京，26 pp.
土田英治（1985）淡静丸によって紀伊水道沖合から採取された潮間帯の貝類。南紀生物，27，95-104.
土田英治（1990）岩手県大槌湾とその周辺海域の貝類相。①原始腹足目と中腹足目。東大海洋研大槌研究センター報告，(16)，1-26.
土田英治（1991）岩手県大槌湾とその周辺海域の貝類相。②新腹足目。東大海洋研大槌研究センター報告，(17)，1-27.
土田英治・石田文男（1977）ワタゾコアミガサとワタゾコシロガサについて。ちりばたん，9(7)，148-149.
土田英治・黒住耕二（1993）岩手県大槌湾とその周辺海域の貝類相。④二枚貝類-1。東大海洋研大槌研究センター報告，(20)，1-30.
土田英治・塩野時男・増成・三崎輝久（1981）山口県産貝類の研究-3。河本コレクションにおける注目すべき貝類。②腹足類・斧足類。山口県立山口博物館研究報告，(17)，1-40.
山下秀夫（1978）東海・黄海産底生生物の研究-V。貝類の分布について。西海水研報告，(51)，45-95.
Plate 1

Gastropoda collected at shallower than 150-200 m off Hino-Misaki and in the Oki-Kaikyo Strait (1).

1. Acmaea (Niveotectura) pallida (Gould) ユキノカサガイ
 CB-6, 15.3 (殻長) × 11.7 (殻径) × 7.8 mm (殻高)
2. Minolia punctata A. Adams コシダカシタダミ
 OK-1, 10.5 (殻高) × 11.1 mm (殻径)
3. Minolia subangulata Kuroda & Habe カドコンダカシタダミ
 OK-2, 14.3 × 14.5 mm
4. Machaeroplas koreanica (Dall) チョウセンシタダミ
 HN-3, 5.7 × 6.6 mm
5. Machaeroplas sp. cf. M. marginatus (Dall)
 HN-3, 3.7 × 6.6 mm
6. Microgaza fulgens Dall ヒカリシタダミ
 OK-1, 5.3 × 10.7 mm
7. 8. Trichotropis (Ishino) uncinatus (Broderip & Sowerby) ネジヌキガイ
 7：OK-2, 23.5 × 14.1 mm
 8：OK-1, 13.1 × 9.3 mm
9. Tanea kilialis (Sowerby) ヒョウダマガイ
 OK-2, 19.1 × 18.2 mm
10. Haustellum sobrinus (A. Adams) ヒネネガイ
 OK-2, 41.4 × 29.9 mm
11. Borostrophon zestrana Dall ケショウツノオリイレガイ
 HN-3, 15.2 × 7.2 mm
12. Pteropurpura (Ocinobretius) falcata (Sowerby) ヨウラクヒレガイ
 OK-1, 34.7 × 21.7 mm
 13：HN-1, 11.3 × 8.7 mm
 14：16.4 × 11.8 mm
Plate 2

Gastropoda collected at shallower than 150-200 m off Hino-Misaki and in the Oki-Kaikyo Strait (2).

1. 2. Microfusus acutispirata (SOWERBY) ヒメニシ
 1: OK-2, 28.6×13.3 mm
 2: 26.2×12.2 mm
3. Buccinum kawamurai HABE & ITO ホソスジェソバイ
 CB-4, 31.2×16.9 mm
4. Siphonalia fusoides (REEVE) トウイトガイ
 OK-1, 45.1×24.2 mm
5. Cancilla (Cancilla) isabella (SWAINSON) カラフデガイ
 OK-1, 27.5×9.2 mm
6. Olivella spretoides YOKOYAMA ワタゾコボタルガイ
 OK-2, 13.8×5.8 mm
7. Olivella sp.
 OK-2, 19.8×6.8 mm
8. Fulgoraria hamlleii (CROSE) イトマキヒタチオビガイ(幼貝)
 CB-6, 19.5×8.9 mm
9. Neadmete nassoides (SCHEPMAN) ピロウドコロモガイ
 OK-1, 11.8×7.5 mm
10. Neadmete japonica (SMITH) ニホンコロモガイ
 HN-3, 12.5×6.4 mm
11. Elaeocyma (Splendrillia) sp.
 HN-2, 14.2×4.9 mm
12. Pulsarella komakimons (OTUKA) コゲジャジクガイ
 HN-2, 14.9×5.1 mm
13. Viciniscala liliputana (A. ADAMS) コピイトカケガイ
 OK-2, 15.8×8.8 mm
14. Viciniscala sp.
 CB-6, 15.9×7.4 mm
15. Fragitopalia? sp.
 OK-2, 17.6×5.1 mm
日本海西部海域における潮流海系貝類
Plate 3

Bivalvia collected at shallower than 150–200 m off Hino-Misaki and in the Oki-Kaikyo Strait (1).

1. *Ennucula nipponica* (SMITH) クルミガイ
 HN-2, 10.7(殻長)×7.7 mm(殻高)
2. *Nuculana (Thestyleda) yokoyamai* (KURODA) アラボリロウバイガイ
 HN-2, 10.6×5.1 mm
3. *Nuculana (Thestyleda) pernula pernuloides* (DUNKER) シワロウバイ
 CB-4, 11.3×5.7 mm
4. *Saccella sematensis* SUZUKI & ISIZUKA アラスジソデガイ
 OK-2, 15.7×9.7 mm
5. *Yoldia similis* KURODA & HABE ナガソデガイ
 OK-3, 21.1×10.4 mm
6. *Yoldia (Cnesterium) johanni* DALL エソソデガイ
 OK-2, 24.5×12.8 mm
7. *Crenutilinopsis oblonga* (A. ADAMS) ナミジウシラスナガイ
 OK-2, 6.9×6.4 mm
8. *Oblimopa japonica* (A. ADAMS) シラスナガイ
 OK-1, 16.1×14.8 mm
9. *Cryptoepecten vesiculosus* (DUNKER) ヒヨクガイ
 CB-6, 19.1×18.4 mm
10. *Myrtea (Notomyrtea) soyoae* HABE ワタゾコッキガイ
 OK-2, 10.9×9.0 mm
11. *Megacardita* sp.
 OK-1, 14.5×11.7×9.1 mm
12. *Nipponocrassatella adamsi* (KOBEI) ウスモノオガイ
 CB-4, 18.5×13.9 mm
13. *Placamen tiara* (DILLWYN) ハナガイ
 HN-1, 13.3×11.5 mm
14. *Pitar (Pitarina) nipponicum* KURODA & HABE スナカムリハマグリ
 OK-1, 25.4×20.9 mm
Plate 4

Bivalvia collected at shallower than 150-200 m off Hino-Misaki and in the Oki-Kaikyo Strait (2).

1. *Merisa margaritina* (LAMARCK) アコヤザクラガイ
 OK-2, 30.8×21.6 mm
2. *Psammotreta (Pseudometis) praesepa* (SALISBURY) アオサギガイ
 OK-2, 42.1×29.0 mm
3. *Gari anomala* (DESHAYES) ウスベニマスオガイ
 CB-6, 21.6×11.2 mm
4. *Abra fujitai* HABE リュウグウザクラガイ
 OK-2, 12.9×7.7 mm
5. *Solecurtus sagamiensis* KURODA & HABE ヤクラキスタアゲマキガイ
 OK-2, 25.6×11.6 mm
6. *Solen* (Ensisolen) *luzonicus* DUNKER ヒナマテガイ
 CB-6, 24.0×5.8 mm
7. *Meiocardia samarangiae* (BEHNARD, CAI & MORTON) コウボネガイ
 CB-6, 24.2×18.5 mm
8. *Anisocorbula scaphoides* (HINDS) ツマベニガイ
 OK-1, 14.3×8.6 mm
9. *Pandorella pseudobilirata* (NOMURA & HATA) ウスネリガイ
 CB-6, 26.4×20.7 mm
10. *Myadora proxima* SMITH ミツカドカタピラガイ
 10: CB-6, 9.1×7.4 mm
 11: 18.7×14.1 mm
11. *Periploma plane* OZAKI リュウグウハゴロモガイ
 CB-4, 13.2×10.4 mm
Plate 5

Bivalvia collected at shallower than 150–200 m (figs. 1–4), and Gastropoda and Scaphogoda at deeper than 150–200 m off Hino-Misaki and in the Oki-Kaikyo Strait.

1. *Laternula (Laternulina) anatina* (Linnaeus) オキナガイ
 HN-1, 38.8×20.8 mm
2. *Poromya flexuosa* YOKOYAMA スナメガイ
 OK-1, 10.5×12.2 mm
3. *Cuspidaria nobilis* (A. Adams) オオシャクガイ
 CB-6, 39.4×22.4 mm
4. *Cuspidaria hindiana* (A. Adams) ツギノシャクガイ
 CB-6, 25.3×12.9 mm
5. *Cocculina japonica* DALL ウサゾコシロガサガイ
 HN-9, 4.9(殻長)×3.8(殻幅)×2.1 mm(殻高)
6. *Cryptonatica clauza* (Broderip & Sowerby) ハイロタマガイ
 HN-5, 21.6×19.3 mm
7. *Euspira* sp. A
 HN-9, 11.3×9.7 mm
8. *Euspira* sp. B
 HN-5, 7.8×5.1 mm
9. *Euspira pallida* (Broderip & Sowerby) ウスイロタマツメガイ
 HN-5, 15.1×14.3 mm
10. *Cylichna consobrina* Gould イトコナイガイダマン
 HN-5, 9.5×4.4 mm
11. *Laevidentalium toyamaense* (Kuroda & Kikuchi) トヤマツノガイ
 HN-7, 27.7 (殻長)×23 mm (殻径)
Plate 6

Buccinidae collected at deeper than 150–200 m off Hino-Misaki.

1. *Neptunea intersculpta* (Sowerby) エゾボラモドキ
 HN-5, 140.4（殻長）×79.8 mm（殻径）

2. *Buccinum tonuissimum* Kuroda in Teramachi オオエッチェウバイ
 2 : HN-10, 125.6×66.5 mm
 3 : 92.3×56.3 mm

3. *Buccinum striatissimum* Sowerby エッチェウバイ
 HN-5, 84.1×44.1 mm

4. *Lussivolttsius furukawai* (Oyama) キジビキカミオボラ
 HN-5, 81.2×43.7 mm

5. *Helicofusus aurantius* Dall ニクイロツムバイ
 HN-5, 47.0×18.6 mm

6. *Mohnia zonalis* Dall ミドリホソバイ
 HN-5, 24.8×11.2 mm

7. *Mohnia* sp.
 HN-9, 13.9×6.8 mm

8. *Neptunea* sp.
 HN-9, 13.3×7.2 mm

9. *Helicofusus aurantius* Dall ニクイロツムバイ（幼貝）
 HN-5, 13.5×8.0 mm
Plate 7

Buccinum tsubai collected at deeper than 150–200 m off Hino-Misaki.

1–9. *Buccinum tsubai* KURODA in TERAMACHI タバイ

1: HN-9, 62.5×38.0 mm
2: 26.0×12.8 mm
3: Juvenile, 15.0×10.6 mm
4: Juvenile, 12.0× 8.6 mm
5: Juvenile, 8.1×6.0 mm
6: Protoconch and early shell (scale bar: 320 μm)
7: Protoconch and early shell (scale bar: 175 μm)
8: Protoconch (scale bar: 115 μm)
9: Protoconch (scale bar: 135 μm)
Plate 8

Turridae collected at deeper than 150-200 m off Hino-Misaki.

1. *Aforia circinata* (DALL) ヤゲンイグチガイ
HN-5, 60.0×22.8 mm

2. *Rectiplanes sanctioannis* (SMITH) エゾイグチガイ
HN-7, 31.4×11.3 mm

3. *Curtitoma becklemishovi* BOGDANOVA
HN-5, 11.0×6.0 mm

4. *Obesotoma solida* (DALL)
HN-5, 15.0×7.6 mm

5. *Obesotoma* sp. cf. *O. simplex* (MIDDENDORFF)
HN-9, 10.9×5.2 mm

6. *Obesotoma candida* (YOKOYAMA) コウノフタマンジガイ
HN-5, 15.9×7.8 mm

7. *Obesotoma nihkaidoensis* (BARTSCH) ミドリフタマンジガイ
HN-9, 18.4×8.9 mm

8. *Propheia* sp. D
HN-9, 11.2×4.7 mm

9. *Propheia* sp. A
HN-5, 21.1×10.5 mm
Plate 9

Bivalvia collected at deeper than 150–200 m off Hino-Misaki.

1-4. *Robaia robai* (KURODA) ロウバイガイ
 1: HN-5, 15.5 (殻長) × 8.1 (殻高) × 4.7 mm (殻幅)
 2: HN-7, 17.3 × 9.0 × 5.1 mm
 3: HN-10, 11.4 × 7.1 × 3.8 mm
 4: HN-10, 15.5 × 9.8 × 5.6 mm

5. *Portlandia* (Portlandia) *toyamaensis* (KURODA) ヨマノデガイ
 HN-7, 19.5 (殻長) × 14.2 mm (殻高)

6, 7. *Nelionella* sp. cf. *N. japonica* OKUTANI ニッポンハトムギソデガイ
 6: HN-9, 2.9 × 2.2 mm (scale bar: 320 µm)
 7: Teeth (scale bar: 155 µm)

8. *Polynemussium alaskense* (DALL) アラスカニシキガイ
 HN-7, 17.7 × 18.5 mm

9. *Maoithyas miyadii* (HABE) ウスハナシガイ
 HN-9, 4.9 × 4.7 mm

10. *Thyasira* (*Thyasira*) *tokunagai* KURODA & HABE ハナシガイ
 HN-9, 10.9 × 10.7 mm

11. *Poromya castanea* HABE クリヨスナメガイ
 HN-5, 12.6 × 11.4 mm

12. *Cuspidaria* (*Nordoneaera*) *trosaetes* DALL アッシャクデガイ
 HN-7, 29.3 × 19.8 × 16.6 mm

13. *Cardioumya* (*Cardioumya*) *gouldiana* (HINDS) ヒメシャクデガイ
 HN-7, 10.1 × 6.4 mm