第１章 緒　論

第１節 研究の目的

我が国においては魚貝肉は重要な蛋白質源であるが、蛋白質が大部分はこれに依存しているが、魚貝肉は鮮度に比して降解しやすく、その貯蔵が極めて困難である。そのため保存、貯蔵されるものもまた少ない。鮮度保持期間が短いかに延長しても、魚肉の利用価値は非常に増大し、我国の食肉経済における利益は顕著である。

水産製造の主要な分野である冷蔵法、塩蔵法、乾燥法、調味法等はいずれも発酵物にある程度の処理加工を施して、可及的に保存を附せ、安全に保存することを目的としている。現在行われている魚貝肉を対象とする生物学的、化学的あるいは細菌学的研究は、すべて上記の方法をより有効に拡大し、実施するための基礎的研究であるというのも勿論ではない。いま、魚貝肉が鮮度肉に比して保存し易い理由について、報告された多くの説を総合して、主なる点を列挙すれば次の如くなる。

1) 魚貝類の肉は自己消化の進みが早いか、かつ死後直従時ににおける筋肉の水素イオン濃度が比較的低いので細菌が繁殖し易い。
2) 魚貝肉の筋肉組織は一般に外層が筋層層で厚く覆われており、これによって細菌の侵入がある程度防止されるが、魚貝肉では筋肉は主として筋肉組織内に分布し、筋層層は薄く、細菌の侵入に対する防護壁としてはより不完全である。
3) 魚貝肉の腐敗は主として解体後、空気中や土壌中にある微生物の繁殖によって起こるが、魚貝肉の腐敗は生鮮から経路の表面や脛等に多数に附着しておる、比較的低温で発育し易い水中細菌によって起こる。
4) 一般に魚貝肉は魚類肉より水分含有量が多い。
5) 魚貝類は魚類の特異性である一時的多様性のために、処理が不完全になり易い。
6) 魚貝類は一般に価格が安いのでその取扱いや処理方法が乱雑になり易く、充分な経験と注意とを払い難しい。

主として上記のような理由から、魚類肉の鮮度保持は極めて容易な問題とされて来た。近年、鮮度保持に関して多数の研究が発表されるようになって来たが、それらの多くのおは、いわゆる魚類の「生きのよさ」について、もしも解脂膜の時期の延長を計ることを目的とした研究である。しかし、魚類の変質は死後直後から開始される筋肉、血液、内臓等の酵素化学的変化と、それに引き続いて、あらためては、発酵による細菌等の微生物の分解と、分離されるが、これらの詳細は未だ明らかにされていると、特に死後直後死後延長中までの期間における筋肉の酵素化学的変化と「生きのよさ」の関係には、密接な関係のあることが予想されるから、これらの詳細を解明することが極めて重要である。

一般に、魚貝類と生鮮のまま直接消費される場合は勿論のこと、加工用原料として利用される場合でも、いわゆる「生きのよさ」が強く要求されるのである。従って鮮度保持の研究においては、腐敗開始の時期を延長させるということよりも、むしろ「生きのよさ」を保持する期間の延長をはかることに主眼が置かれなければならない。これに対して、減菌方法（致死処理）や減菌直接（致死直後）の取扱い方が、「生きのよさ」に影響をおよぼすことはある程度知られていたが、筋肉の酵素化学的変化を判定する適当な方法が見出されなかったために、このような研究を進めることに多くの困難が伴い、詳細な研究はまだたく行われなかった。

著者は死後早期における魚肉の酵素化学的変化の測定に、極めて新鮮な魚肉においてのみ研究される「洗
い"の現象。すなわち沸流による後尾部の収縮現象を応用し得ることに発表し、その機構を解明すると共に簡易な魚肉収縮度の測定装置を考案した。

この方法により、いわゆる "生きのよさ" の測定が可能になったので、さらにこの方法を用いて、致死条件およびその後の収斎方法等の各種の検討要因と、魚肉の "生きのよさ" との間の関係について、広汎な研究を行った。

この研究を遂行するに当たって、絶えざる御鞭撻を賜った東京水産大学教授田内郷三郎博士、御親切な御教示と御校門を賜わたれた京都大学教授清水信博士、同教授佐佐正夫博士および東海区水産研究所長野瀬之博士に心から感謝し、さらにまたこの研究の機会を与えられた竹倉御指導を賜わたった日本海区水産研究所所長内橋華博士に厚く感謝する。あわせてこの研究は著者の近隣である日本海区水産研究所員山本常氏、仲倉夫氏、宮沢義子氏等の御協力によつたものであり、また原料魚の入手、実験場所等に御便宜を取らつて頂いた山形県水产試験場長五十嵐倉門氏その他の諸先輩、同僚諸氏の御指導と御援助によつたものであることを記して厚く御礼申し上げる。
魚の鮮度に関する研究

第2節 脯歯の研究

著者的研究に関する既往の研究は、鮮度判定に関するもの、死後硬直の機構に関するものならびに死後硬直におよぶ諸因子に関するものに大別できる。

Ⅰ 鮮度判定に関する研究

肉類の鮮度を科学的に判定する方法に関しては、既に古くから多くの研究が発表されているが、これらを大別すれば(1)物理的な方法、(2)化学的的方法、(3)微生物的的方法および(4)解剖学的方法になる。

(1) 物理的方法

死後時間の経過と共に筋肉が硬直するいわゆる死後硬直現象、すなわち筋肉の弾性の変化から魚の鮮度判定を行う方法が、Halpern(1) ('31)、山村(2) ('32)等によって報告されている。しかし、この方法は魚種の相違、測定部位あるいは測定方法の差異等について検討の余地があり、特に実験した魚体では後に述べるように死後変性に変化を生じ難くその判定が困難である。また変形係数（Modulus of elasticity）の変化については、Bate-Smith(3) ('39)がウサギの筋肉筋肉を素材として、その伸縮曲線から死後硬直の判定に利用し得ることを報告しているが、魚肉についてはこのような研究は見当らない。

また筋肉の死後変化をもしMyosin紜蛋白の構造の変化を伴うものであるとすれば、このような蛋白質の変化も鮮度の測定に影響を及ぼす。このような蛋白質の変化については既にVassiloiow(4) ('30)、大竹(5) ('54)等の報告が見られるが、Vassiloiowは加熱肉を、大竹は凝固抽出液を用いているので、当然魚肉蛋白の変性を考え、鮮度低下以外の肉質に由来する蛋白の構造の変化等が予測される。SmorodintzewおよびKrylov(6) ('36)によって報告された肉浸出液の表面張力の変化に基づく方法は、含有脂肪の界面における影響等を考慮に入れなければならないので、魚肉の鮮度判定は困難である。

又筋肉の電気抵抗は死後時間の経過に伴い変化するという事実が、Herrmann(7) ('72)、Galeotti(8) ('08)、Grile(9) ('22)、田村(10) ('32)、須藤(11) ('33)、山村(12) ('41)、山田(13) ('43)等多くの研究者によって明らかにされ、さらにこの事実に基づく鮮度判定法が研究された。しかし、これらの研究結果によって、電気抵抗の変化は必ずしも鮮度低下と一致しない場合があり、また外観条件によってその変化はかなり不完全であって、死後硬直期間中の魚の鮮度判定法としてはこの方法も適当ではない。

(2) 化学的方法

この方法は鮮度判定法のうちでは最も提案が多く、かつその歴史も古い。

特にアンモニアと鮮度との関係については、Eber(14) ('81)の研究以来、TillmansおよびOtto(15) ('24)、溝水(16) ('25)、木下(17) ('34)、谷川(18) ('35)等多数の研究が行われ、いずれも30〜40mg/l内の一定の数値が初期鮮度の限界と定めている。その後の数多くの化学的鮮度判定法の提案として、この値が取られているが、サメのような魚種には適用できない。また死後硬直時においては筋肉内のアンモニアの濃度は極端であり、しかも既に谷川(19) ('48)、大野(20) ('53)等が報告しており、鮮度判定の基盤を受けて不安定であるから、死後硬直時の鮮度判定にはアンモニア濃度による方法は利用し得られない。

筋肉のアミノ酸量は鮮度の低下と共に増加するから、その増加の程度を測定して、鮮度を判定する方法が試みられている。しかし一般に筋肉のアミノ酸量は魚種によっては複雑、同一魚種でも時期、換気等によって、生鮮時には魚種に不均一であるので、死後硬直時間中の鮮度判定には不適当である。

魚肉中の全窒素量と可溶性窒素量との比を以てする試みも、最近大竹(21) ('54)等によって報告されているが、採取に長時間を要するのみならず、溶出蛋白に対する時数が不充分であって、今直ちにこれを応用することは困難である。

筋肉のトリメチルアミノ量を測定する方法は、BeaityおよびGibbons(22) ('37)によって提案され
て以来、多数の学者によって詳細に研究され、魚肉の細胞誤定法としてかなり優秀なことが確認された。最新の研究(53)において、マグロ、マグロのような魚種の血糖値中には、生鮮時にトリメチルアミノウオキサイドを処理する能力を有する酵素が存在することを報告している。しかし一般に、この方法はトリメチルアミノウオキサイドで、主として細胞の生命を支配する酵素の存在を示すもので、筋肉中には存在するその酵素は、生鮮時の条件により異なることが示されている。従って、死後至直後の細胞誤定法にこの方法を応用することはできない。小幡および栄敏(54)の研究において、Bovine κ-caseinの生鮮時のビタミンについて、パラオキサイドを用いてビタミンKとして補完した場合、その感受性に対する影響を利用することが示されている。

(4) 組織学的方法

この方法は主として存在する細胞数を測定する方法である。従ってこの方法を死後至直までの細胞誤定法ぬさず魚肉の「生きのよさ」の判断に利用することは出来ないと考えられる。
魚の酸度に関する研究

木村(33)，今井(35)，市川(49)、河端(53)等によって極めて興味深い研究が報告されているが，実施には長時間の固定，染色等の操作が必要であり，かつ魚種その他の条件によって必ずしも常に同一結果が得られるとは限らないので，この方法を直接に酸度判定に応用することは困難である。

死後硬度の機構に関する研究

死後硬度の現象については，古くSwammerdam(1667)の報告以来多数の学者によって研究されてきたが，ここでは主として硬度の機構に関して行われた研究の主なものを記すに止めた。

Fletcher(102)の研究以来，死後硬度の起きる要因は乳酸の蓄積にあると考えられ，Furt6(19)は，死後硬度は乳酸による筋蛋白の膨張象であり，解剖は筋蛋白の著明な現象であると考えた。

一般に，死後における乳酸の現象は筋肉の死後硬度の発達に伴うのであるが，Leim(27)は鯖魚，鯖魚およびトロール獲魚の筋肉中の乳酸量を測定して，乳酸が死後硬度の起る時間との間に関係がないことを報告し，Hoe(192)は酸の蓄積に伴って死後硬度が起きることを確かめ，死後硬度の主要因は筋肉からのHexose磷酸の消失であると考えた。その後Lundsgaard(120)にによって，一昼夜處方に血管に，乳酸生成を伴わない筋収縮が存在する実験が発見されてから，死後硬度の主要因は乳酸の蓄積であるとは誤考えられなくなったとされる。しかし，乳酸生成が死後硬度の主要因ではないとしても，死後の筋肉PH値の変化等に影響を与えるが，硬度の定義等に影響するので，死後硬度現象に多大な影響を与えることを否定することは出来ないであろ。彼後Erdös(193)はATPが減少すると死後硬度現象が生じ，Myspinは不溶性となると報告し，Bate-Smith(13)は電気糖およびインシュリン注射を行ったウサギの筋肉の死後硬度現象を観察し，Erdösの実験結果を確認し，さらにATPの消失と解釈作用との関係に密接な役割があることを認め，生する乳酸によって変化した筋肉の電流イオン濃度が，これらの酵素の作用力に影響することを明らかにした。すなわちPH値が低く，かつGlycogen筋が少ない時にはATPの再合成が行われ難く，死後硬度は速かに進行すると述べた。さらに同氏(148)は死後硬度と筋肉の収縮とは，その過程において異物であるであろうと考察しているが，名坂(151)はその著書で，普通筋肉の筋収縮の場合には分解と合成との塩基化的定式が行われるために，死後においても電流の停止等外的影響の条件が異なるために，内部の活動物質の分離過程が起こり，無気の変化が生じて再合成過程が停止し，ATP，CP及びGlycogen等が減少して筋蛋白が収縮する。しかし筋肉とその過程が同一方向であり，筋肉の収縮の如く，一方では分解し他方では合成する逆逆の変化が見られないので，筋肉に一貫した固定状態となる。さらに乳酸蓄積等の結果筋肉が膨張して，その過程で蛋白の酸化変化がこれに一部は形成蛋白となり，一部は変性しながら解釈が起こる。個数の酸度に関しては，Verzar(149)によれば，休息筋であるMyspin筋萎縮の伸張の形をも，Myspinのcarboxyl group（一）に加里イオンと，Amino group（＋）には増加イオンがそれぞれ結合しているが，刺激によってMyspinからこれらのイオンが解離し，Myspinの酸を（＋）（一）基が遊離してお互いに結合し，鰭状筋膜のMyspin分子は折りたたまれた形となり，変形して収縮する可能性があると。またSzent Györgyi(151)によれば，休息筋ではMyspinはATPと結合しActinと結合していないが，刺激によってActinとMyspin間の平衡が乱れれば，Actin＋Myspin＋ATP＝Actomyosin＋ATPとなり収縮し，次にActomyosin＋ATPaseの作用によってATPが分解すれば，筋肉は弛緩して，Actomyosin＋ATP＝Actomyosin＋ADP＋phosphate＋Actin＋Myspin＋ATPとなり肝に回復すると。殿村(153)によれば，休息筋では筋繊維はActomyosinの形であり，ATPは他の結合体と結合しており，ATP－aseの活性体を中心とした結合をしているが，刺激を受けばATPは遊
離し，ATPase活性体の中心と結合して分解し，初めて Actomyosin粒子が変形し収縮する可能性があると述べている。それ故これまで筋肉収縮の機構については，極めて多数の説が述べられているが，まだ一般に確実されておらず，いずれも筋膜の話を含めていない。結局段階階においては，生体収縮の機構は，ATP等の分解を伴う Actomyosinの結合解離とその構造的変化に帰着するという程度のことが考えられるに過ぎない。

また，蒸溜水に変性した筋肉を浸せきした時，自動的な筋肉収縮が起こることは，古く Wittlichが記載しているが，Herman等（1897）はその原因を筋肉中にNaClが逆流する為であるとし，Loeb（1909）は筋肉の収縮とその抑制をNa，Ca濃度の比で説明し，この値が大きくなると収縮が起こり，小さい時には抑制されるとし，浅沼（1916）および板原（1920）はNaイオンの流出がその原因ではないが，KまたはCaが抑制的に収縮を抑制することを明らかにすると述べた。Heilbrunn等（1908）は細胞内のNaCl，SrCl2，BaCl2液に浸せきすると収縮するが，NaCl，KCl液では筋肉を誘導させ，またMgCl2液では筋膜の役を演じて初めて収縮するものを観察した。

このように変性した筋肉を，蒸溜水または揮発性緩衝液の中に浸せきまたは浸漬した場合に急速かつ激しい筋収縮が起こることは，古くから認められていた実例であって，本邦では特に魚肉について“洗い”の現象としてよく知られているが，その細節も全く判明しておらない。

Ⅱ 死後硬直におよぼす諸因子に関する研究

魚類の致死条件および生前ならびに死後的に取扱い方が死後硬直現象におよぼす影響についての研究はかなり多い。Ewart（1911）（1857）は飼育および撹拌によって処理されたハドンクの死後硬直現象を観察し，飼育のものはトロール処理魚種に比較して死後硬直時間が長く，かつ内臓を除去すれば硬直時間が延長すると報告し，Anderson（1908）（1907）も同様の現象を認めた。低温度における魚肉の老化の現象があることは明らかである。Schlie（1935）（1934）は数種の魚種について研究し，低温度ほど硬直時間が延長することを確かめ，かつ魚体に触れる回数が増加するほど硬直時間は延長し，魚肉のPＨ値が早く上昇すると報告した。また Cutting（1906）（1939）が数種のトロール処理魚種の死後硬直現象を観察した結果によれば，同一魚種における個体差は魚種の差が大きく，また魚体の大小，あるいは死後除去などが死後硬直に大いな影響を与えない。しかし，氷を冷やすれば硬直時間が短くならないのが，硬直開始までの時間は延長する。

本邦では，古くから死後硬直期間の延長をはかる目的で，イチの高級魚に対して，漁獲直ちに胴部を剥して殺し，いわゆる“スキメ”という操法が諏訪湖沿岸および他の地方の漁業界で行われており，しかしこのような魚種の致死条件に関する科学的な研究は最近まで殆ど行われておられなかった。山村（1962）（1957）によれば，電撹によって死亡させたコイは神経伝統を切断して死亡させたものより硬直発生の程度が大きく，また软化する程度も小さい。浅川等（1955）は電撹によって死亡させたものおよび撹拌したものの両者の間では，硬直期間に著しい差異は認められないが，解体処理にかかわる差異があることをヤハダマダで観察した。

安藤（1958）（1959）等はアイの魚類魚と魚体の部分を，アイの魚種が硬直することについて観察した。また大野（1953）等は死後硬直と解体作用との関係を，延続個体および個体の各危険条件の異なるソウダマダシについて研究し，苦悶死のものは解体作用も死後硬直も共に最も早く起こり，延続個体のものが最もおくされることを見，また鶴（1953）等は苦悶死と断頭死のソウダマダシの解体作用，特にコトリヒラの化物の行動と死後硬直との関係を研究し，苦悶によつてATPの消失が早く，かつ死後硬直の開始が促進されることを見た。しかしこれら等の諸報告においては，いずれも死後硬直の判定は肉眼的観察によって行われ，また死後硬直の程度については全く不明かにされておらない。

すなわち魚類の致死条件あるいは死後の取扱い方法が，魚肉の“生きのよさ”に，どのように影響をおよぼすか等についてもその研究は極めて不充分である。
第2章 濡流による筋収縮（ミャシ）の現象に関する研究

第1節 筋肉の収縮

筋肉の収縮を測定する最も簡単な方法は、「ノギス」を使用して筋肉片の長さを測定することであるが、筋肉片が短い場合にはその収縮の絶対量が小さく、しかも収縮の際には筋肉片が彎曲したり、あるいは筋肉片の末端が不明瞭となって測定が困難である。従って、通常は横梁を用いて筋肉収縮量を拡大し、モルテグラフを使って直接的に記録する方法か、あるいはさらに反射鏡を用いて測定スケールに拡大して観測する方法等が行われている。著者は各種の装置を比較し、その優劣を検討した結果、第一図に示したような著者の考案した装置が、使用の簡便な点からも、測定誤差の少ない点からも、極めて優秀であると認められたので、本研究ではすべてこの装置を使用した。この装置の主部は、クリップ状の肉片支持器（C）と横梁（B）及びScale（A）の3部から成っている。横梁（B）はEを回転軸として自由に回転することが出来る。この横梁（B）は左右に移動出来る重荷（F）及び（F1）の調節によって、常に一定の荷重で試料肉片を引張っている。肉片支持器（C1）も左右に移動することが出来る。これによって、固定された試料はその長さを直ちにScale（G）によって観測することが出来る。また回転軸（E）からScale（A）までの距離は、肉片支持器（C）の肉片を挿入位置までの距離の5倍に設計されているから、実際に収縮した筋肉の長さは5倍に拡大された値で、Scale（A）から読むことが出来る。

第1図 濡流による筋収縮量測定装置
筋肉収縮筋の測定方法

極めて新鮮な筋肉片は鰤かの刺駆によっても収縮するので、既に収縮した筋肉を試料に用いる恐れがある。しかし、各解剖{51}によれば、筋肉を一度引伸ぎ、しかる後一度収縮させるとともに一定の長さに復帰する。著者は魚肉片を用いてこれを追試し、筋肉を鰤り引伸ぎ、ビリビリ等で鰤く刺駆するとは一一定の長さに復帰する事実を確かめたので、先ず肉片を支持器（C，C1）に挿んだ後、引伸ぎ、次にビリビリで鰤く刺駆し収縮させ、横杆（B）の微動器が停止した後、支持器（C1）をかたかたに左右に動かし、横杆（B）が Scale（A）上の零点を示す位置で（C1）を固定する。この場合における（C）（C1）間の距離が筋の原長で、Scale（G）から直ちに測定出来る。次にこの筋肉に一定温度の蒸溜水を毎分15cc/cm程度の割合で満下させる。液の満下に伴って筋肉片は収縮し、Scale（A）の示度は減移動する。この示度から筋肉の収縮値を算出する。なおこの場合、常に等張性収縮を行わせるために、一定の荷重で筋肉片を引伸ぎ、ように荷重（F）を装置する。この場合の荷重は0.5g程度が適当である。

筋肉の収縮筋は魚体の部位及び筋繊維の方向によって異なるから、試料に用いる筋肉片は常に一定の部位のものであり、且筋繊維の方向が同じものでなければならない。尤も筋中央部の背側筋を使用した。筋肉片の大きさは別記した理由によって、大約0.2cm，厚さ0.1cm，長さ1.5～3.0cmの長方型，短冊型とした。この筋肉片は、遠かに魚体を3枚に切った後、鈍利な解剖銛を使用して調製された。試料に用いる筋肉片の原長は可及的に長にされるように、常に数ミクと相違し、厳密に等長ではないから、実測値をそのまま収縮筋として比較することはできないが、実測された収縮筋の原長に対する割合、すなわち収縮率を比較することはできる。従って、この研究ではすべて収縮の程度を示す指標としてこの収縮率を採用した。

先ずこの方法による測定の精度を確かめるため、断頭死のコイ魚を用い、次のような予備実験を行った。すなわち同一部位の筋肉片を用い、20°Cの蒸溜水を満下し、5回ずつ4種の試料につき20回の測定を行い第1表に示すような結果を得た。すなわちかなりよい精度であることが知られる。

第1表 溜下による筋収縮測定方法の精度

<table>
<thead>
<tr>
<th>No.</th>
<th>筋原長 cm</th>
<th>収縮率 △</th>
<th>筋原長 cm</th>
<th>収縮率 △</th>
<th>背側腹骨筋</th>
<th>背側腹骨筋</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.35</td>
<td>0.305</td>
<td>0.96</td>
<td>0.225</td>
<td>0.111</td>
<td>0.170</td>
</tr>
<tr>
<td>2</td>
<td>0.90</td>
<td>0.322</td>
<td>1.02</td>
<td>0.202</td>
<td>-0.012</td>
<td>1.12</td>
</tr>
<tr>
<td>3</td>
<td>1.00</td>
<td>0.281</td>
<td>1.02</td>
<td>0.195</td>
<td>-0.016</td>
<td>1.00</td>
</tr>
<tr>
<td>4</td>
<td>0.92</td>
<td>0.296</td>
<td>0.90</td>
<td>0.236</td>
<td>0.022</td>
<td>0.97</td>
</tr>
<tr>
<td>5</td>
<td>1.06</td>
<td>0.319</td>
<td>1.12</td>
<td>0.210</td>
<td>-0.004</td>
<td>1.24</td>
</tr>
<tr>
<td>平均値</td>
<td></td>
<td>0.304</td>
<td></td>
<td>0.214</td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ</td>
<td></td>
<td>0.015</td>
<td></td>
<td>0.016</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

収縮率 = 収縮量 / 筋原長

背側腹骨筋

 impresion={simple:1.5}
第2図 筋繊維の方向を異にして試料を固定した場合の筋肉片の収縮及び伸長の状況
(ヨイの背側筋を20℃の蒸溜水で灌流)
(1)及び(2)：筋繊維と直角の方向に試料を固定した場合の伸長
(3)：筋繊維の走る方向に試料を固定した場合の収縮

第3図は死直後のヨイの筋肉片と、蒸溜水で灌流した後の同一筋肉片を比較した写真である。即ち灌流によって筋肉片は卷縮して長くかつ短くなる。

以上の実験からあきらかなように、"洗い"による筋肉収縮の測定に際しては、常に筋繊維の方向を一定（筋繊維の走る方向に平行）にして測定することが肝要である。通常筋肉は多方向の筋繊維から成り、一定方向の筋繊維からなる部分は小範囲に限定されているから、試料に用いる筋肉片は出来得る限り小片としな、このような部分のみを測定に用いなければならな。そして多くの実験の結果、試料を長さ0.2cm、厚さ0.1cm、長さ1.5〜2.0cmの肉片とし、測定の際には筋原長の長さを1.0cm内外とすれば、満足すべき結果を得ることがあきらかになったので、以下の実験では特に指定した以外はこれに従った。

第3図 灌流による筋収縮の状況

(1) 死直後のヨイ (Cyprinus Carpio)
の背側筋×2

(2) 灌流により(1)の筋肉片が収縮した状況
×2
第2節 魚体の各部位における筋収縮率、pH値、Glycogen量およびPolyphosphate-P量

筋肉には生活時常に激しい運動を行う筋肉と、しからざる筋肉とがあることが知られている。例えば体の推進にあずかって力があり激しい運動を行うものは、宋氏が（'47）によれば主として尾鰭の筋を含んだ体側筋である。又加强（'53）（'50）は52種の魚類の体側筋、特に血合筋の比較解剖を行い、運動の緩慢な魚類と激しい魚類とでは構造的に差異のあることを認めた。従って鰭面による筋肉の収縮量も、魚体の各部位によって差異があり得ることを想定される。

そこで著者は第4図に示すような魚体の各部位における筋肉を試料とし、灌流による筋収縮率の測定を行うとともに、同時に生活時における筋収縮のenergy源と考えられている筋肉内のAdenyl-Polyphosphate量、Glycogen量ならびに筋肉のpH値の測定を行った。
実験に供せられた魚はいずれも定置網で漁獲後、水族館内の氷槽に一夜飼育し休養させた後、断頭死亡させ、直ちに実験に供された。

供試魚種は海水魚ではドナザメ、マグダ、ミシマオコゼ、クロダイ、マダイ、ソウハチカレイ、マサバ、プリ（幼魚）およびトピウォ、淡水魚ではコイおよびナマズである。

Ⅰ 収縮率
まず予備実験としてコイ、ナマズ、クロダイおよびプリの各魚種を試料に選び、筋肉の収縮率と摂水による通気時間との関係を温度20℃において研究し、第5図に示すような結果を得た。

筋肉の収縮率および収縮の速度は、魚種のみならず同一魚体でも、部位によってかなり相違する。しかしいずれも収縮は摂水の初期に急速に行われ、次第に緩慢となり、ある時間経過後にはこの現象は停止し収縮は完了する。この収縮が完了するまでに要する時間は魚の種類により異なるものと考えられるから、以後の実験は特別の場合をのぞき、摂水の時間を90分とした。

全供試魚種について、この方法によって測定した。結果を第6図（図中の数字はその部位の筋肉の収縮率である）および第2表に示した。コイ、マダイ、クロダイ、プリ、サバ、トピウォ、マサバ等では、胴中央部および尾部の背側筋が最も強く収縮し、ナマズ、ドナザメ、ミシマオコゼ等では、体の前半部の背側筋が強く収縮しかえって後半部の背側筋の収縮率は小さい。またタイ類やミシマオコゼ、マサバ等では、胸鰭および背鰭の挙筋、あるいは胸鰭挙筋と近縁のある腹側眼鰭群等の収縮率が一貫に大きいが、ナマズ、トピウォ等では、比較的この部位の筋肉の収縮率は小さい。また一例には背側
第5-5図 澱流によるクロダイ（Sparus swinhonis）の筋肉の収縮曲線（20℃）

A1C : 背側筋
A2 : 背側鰭骨筋
A3 : 腹側鰭骨筋

第5-6図 澱流によるブリ（Seriola quinquemaculata）の筋肉の収縮曲線（20℃）

A1 B2 C : 背側筋
D : 腹鰭骨筋
E : 吸振筋
R : 血合筋

筋の収縮率が最も大きいが、ソウハチカレイでは反対に背側筋の収縮率が最も小さく、背側鰭骨上筋の収縮率が最大である。また一般に、常に激しい游泳運動を行っている赤身魚類であるブリ、サバ等の骨格筋、あるいは赤肉である血合筋等はその収縮率が小さく、運動が不活発といわれているオコゼ、フグ、ナマズ等の白色の骨格筋は比較的に収縮率が大きい。
第6図 魚体各部位の筋肉の収縮率（図中の数字は灌流による収縮率を示す）

(1) イ (Cyprinus carpio)

(2) ナマズ (Parasilurus asotus)

(3) ドナメ (Triacis scyllium)
(4) マフグ (Sphoeroides rubripes)

(5) ミジマネコゼ (Uranoscopus japonicus)

(6) クロダイ (Sparus swinhonis)
(7) ソウハチカレイ (Cleisthenes herzensteini)

(8) マサバ (Scomber japonicus)

(9) マダイ (pagrosomus major)
皮膚の pH 値
死後 1 時間以内の筋肉を試料とし、ベックマン G 型 pH メーターによって直接筋肉の pH 値を測定し、その結果を第 2 表に示した。

筋肉の pH 値は、解離作用の結果死後急速に低下することが予想されるので、死後直ちに測定することに努めた。しかし実験の関係上、死後直ちに測定出来ない場合には 1 時間以内に測定を完了し、その間の解離作用の進行を出来るだけ制限するために、5℃ 前後の冷蔵庫に保管した。この場合でも、死後 1 時間以内に変化する pH 値の範囲は、コイの場合 0.05～0.10、サバの場合 0.08～0.15 の範囲であり、測定時間の経過によって測定値に相当な程度の変動を生ずることは防止されなかったが、その差異は 0.15 以内であった。

魚肉 pH 値の部位による差異については、既に河端（'52）、天野（'53）等がソウダカツオ及びソウダカツオについて報告し、新鮮時においては硬膜筋、 enumerated 筋、胸鎖筋部内等の筋肉 pH 値は高く、また血合筋肉も普通筋肉に比較して幾分高いことを観察し、これらの部位における乳酸生成量が少ないことから、これから等の筋肉は普通筋肉に比較して解離作用が数弱であるためであり、生理的機能と関連があるのではないかと述べた。

著者の観察結果においても、一般にこれらの筋肉に相当する岐筋及び胸鎖掌筋等の筋肉 pH 値は高かった。しかし血合筋と普通筋とはその観察を異にした。すなわちコイ、ナマズ、ドナズメ、マダイ、トビオ、サバ等においては、背側筋の pH 値は比較的高いが腋側鰭筋や血合筋は低い。またプリ、サバのような赤身
魚の醸酵に関する研究

iii Glycogen 水
試料2.0gを直ちに30%苛性亜鉛で溶解し、さらに Glycogen を硫酸で加水分解して、生じた還元糖をFolin-Wuの方法で遊水塩では活性が2.70を示したが、島津製の酸型酸塩を用いて酸塩定量した。結果は第2表の通りであった。

魚肉内の Glycogen 水に関しては、既に安藤(19)、山田(20)、天野(21)、水島(22)、(13)77の報告がある。安藤によれば天野のコイでは無水酸塩2.0〜0.4%、不加熱のコイでは0.07〜0.35%であり、天野によれば死後20分のソウダカワハスで380〜650mg%である。さらに天野は各部位によって差異のあることを認める。水島は2種の魚類の血肉及び胃肉の加水分解を測定した。普通肉に比較して血肉に極めて含有量が多いと述べている。しかし水島の結果は極めて小さく、普通肉の練造肉は11.0mg%、血肉は106.4mg%であるが、実験方法に疑問の余地があり、前報の良いものを使用したと記載してあるが、恐らく死後速断取中に若くは凍結後のものを試料としたのではないかと想像される。

第2表に示された著者の結果から、筋肉の Glycogen 水は、魚種によるのみならず、魚体の部位の相違によって、かなり差異のあることが認められる。普通肉ではコイ、サバ、マグロ、マグロ、ダイ、ブリ、コイ等はその含有量が多く4.0〜1.0000mg%、ミスミアコギ、タイ類、ブリ類は少く100〜200mg%である。一方血肉は普通肉に比較してクサダイ、コイ等が多く1000mg%近い値であるが、サバは少く500mg%台である。また冷蔵、保冷等は赤肉筋であるが、一般に Glycogen 水が少く100〜200mg%である。

iv Polyphosphate-P 水
ATP等を含む高エネルギー磷酸化合物は、一般に生活時における筋肉中のエネルギー源として考慮されておりながら、 Авторによる筋収縮の場合にも深い関係を有するのではないかと考え、同時ATP 塩基酸置の測定を行った。

ATP等の磷酸塩の定量は、Fiske-Smith(33)、Lepage(34)、(15)等が行わ方法にして、試料を直ちに冷凍保存で抽出し、7時間燃焼後の活性炭と可溶性無機塩酸との差を Polyphosphate-P 水（H₇P-P）として示した。塩酸の定量は島津製の酸塩管比色計を使用し、中村氏の変法(35)、(16)によった。その結果を別表に示した。

死後魚肉内の Polyphosphate-P 水に関しては魚肉が少く、特にコイの血肉が見出すに過ぎない。同氏はソウダカワハス魚肉について、致死条件との関係を研究した結果によれば、直後では H₇P-Pは50.6mg%, ATP-Pは32.5mg%であるのに対し、晩期後では H₇P-Pは71.4mg%, ATP-Pは17.4mg%である。著者の結果は福原等の結果と大体同様の結果を示し、19.9〜55.0mg%の範囲であった。しかし、この範囲内では魚種および魚体各部位によって相当の差異が示された。特に注目される点は、同種魚種では H₇P-Pが流動による筋肉の収縮率との間に密接な関係が存在することである。すなわち筋肉可収縮力の大きい部位ほど H₇P-P量が多い。しかし、また一面ブリ、サバのような赤肉魚では H₇P-P量が多いのにかかわらず、他のコイ、フグ、タイ等の白色魚肉に比してその収縮率が極めて小さい。
第2表 断頭死直後の魚体各部位の筋肉の温流による収縮率、pH値。Glycogen量およびAdenyl-polyphosphate (△TP-p) 量。

(1) ヨイ

<table>
<thead>
<tr>
<th>部位</th>
<th>収縮率%</th>
<th>pH値</th>
<th>Glycogen量 mg%</th>
<th>in-Organc-mg%</th>
<th>7min-heat-P mg%</th>
<th>△TP-p mg%</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>17.2</td>
<td>6.70</td>
<td>440.0</td>
<td>123.3</td>
<td>143.3</td>
<td>20.0</td>
</tr>
<tr>
<td>A2</td>
<td>13.7</td>
<td>6.55</td>
<td>265.0</td>
<td>105.0</td>
<td>121.6</td>
<td>16.6</td>
</tr>
<tr>
<td>A3</td>
<td>13.7</td>
<td>6.55</td>
<td>310.0</td>
<td>106.6</td>
<td>129.9</td>
<td>23.3</td>
</tr>
<tr>
<td>B1</td>
<td>33.5</td>
<td>6.80</td>
<td>—</td>
<td>166.6</td>
<td>200.1</td>
<td>33.5</td>
</tr>
<tr>
<td>B2</td>
<td>21.3</td>
<td>6.65</td>
<td>290.0</td>
<td>117.3</td>
<td>143.3</td>
<td>26.0</td>
</tr>
<tr>
<td>B3</td>
<td>21.0</td>
<td>6.55</td>
<td>—</td>
<td>125.0</td>
<td>145.3</td>
<td>23.3</td>
</tr>
<tr>
<td>C</td>
<td>22.1</td>
<td>6.85</td>
<td>370.0</td>
<td>131.6</td>
<td>161.6</td>
<td>30.0</td>
</tr>
<tr>
<td>D</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>E</td>
<td>32.1</td>
<td>6.90</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>F</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>R</td>
<td>16.8</td>
<td>6.55</td>
<td>700.0</td>
<td>81.6</td>
<td>93.3</td>
<td>11.7</td>
</tr>
</tbody>
</table>

(2) ドチザメ

<table>
<thead>
<tr>
<th>部位</th>
<th>収縮率%</th>
<th>pH値</th>
<th>Glycogen量 mg%</th>
<th>in-Organc-mg%</th>
<th>7min-heat-P mg%</th>
<th>△TP-p mg%</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>20.5</td>
<td>6.80</td>
<td>637.6</td>
<td>115.0</td>
<td>142.0</td>
<td>27.0</td>
</tr>
<tr>
<td>A2</td>
<td>11.3</td>
<td>6.40</td>
<td>425.0</td>
<td>113.3</td>
<td>131.5</td>
<td>18.5</td>
</tr>
<tr>
<td>A3</td>
<td>9.4</td>
<td>6.43</td>
<td>410.6</td>
<td>113.3</td>
<td>127.5</td>
<td>14.5</td>
</tr>
<tr>
<td>B1</td>
<td>14.2</td>
<td>6.70</td>
<td>500.0</td>
<td>118.3</td>
<td>136.6</td>
<td>13.3</td>
</tr>
<tr>
<td>B2</td>
<td>10.2</td>
<td>6.60</td>
<td>—</td>
<td>111.6</td>
<td>131.6</td>
<td>20.0</td>
</tr>
<tr>
<td>B3</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>C</td>
<td>11.6</td>
<td>6.50</td>
<td>575.0</td>
<td>115.0</td>
<td>133.3</td>
<td>18.3</td>
</tr>
<tr>
<td>D</td>
<td>6.4</td>
<td>—</td>
<td>176.6</td>
<td>101.7</td>
<td>111.6</td>
<td>9.9</td>
</tr>
<tr>
<td>E</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>F</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>R</td>
<td>—</td>
<td>6.40</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

(3) マグダ

<table>
<thead>
<tr>
<th>部位</th>
<th>収縮率%</th>
<th>pH値</th>
<th>Glycogen量 mg%</th>
<th>in-Organc-P mg%</th>
<th>7min-heat-P mg%</th>
<th>△TP-p mg%</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>21.5</td>
<td>6.53</td>
<td>1,240.0</td>
<td>129.9</td>
<td>148.3</td>
<td>18.4</td>
</tr>
<tr>
<td>A2</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>A3</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>B1</td>
<td>32.5</td>
<td>6.52</td>
<td>783.4</td>
<td>144.1</td>
<td>174.9</td>
<td>30.8</td>
</tr>
<tr>
<td>B2</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>B3</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>C</td>
<td>24.0</td>
<td>6.93</td>
<td>651.6</td>
<td>142.0</td>
<td>162.4</td>
<td>20.4</td>
</tr>
<tr>
<td>D</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>E</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>F</td>
<td>18.9</td>
<td>6.63</td>
<td>211.6</td>
<td>83.3</td>
<td>100.0</td>
<td>16.7</td>
</tr>
<tr>
<td>R</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
（4）ミシマオコユ

<table>
<thead>
<tr>
<th>部</th>
<th>収縮率 %</th>
<th>(p) 値</th>
<th>Glycogen</th>
<th>in-Orgin-P</th>
<th>min-heat-P</th>
<th>△P-P</th>
<th>mg%</th>
<th>mg%</th>
<th>mg%</th>
<th>mg%</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>30.5</td>
<td>6.88</td>
<td>80.0</td>
<td>96.6</td>
<td>123.7</td>
<td>27.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>32.0</td>
<td>6.78</td>
<td>180.0</td>
<td>96.6</td>
<td>123.7</td>
<td>27.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>23.5</td>
<td>6.74</td>
<td>63.4</td>
<td>83.3</td>
<td>107.5</td>
<td>29.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>25.0</td>
<td>6.70</td>
<td>206.6</td>
<td>96.6</td>
<td>121.6</td>
<td>25.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>83.4</td>
<td>68.5</td>
<td>90.0</td>
<td>21.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

（5）クロダイ

<table>
<thead>
<tr>
<th>部</th>
<th>収縮率 %</th>
<th>(p) 値</th>
<th>Glycogen</th>
<th>in-Orgin-P</th>
<th>min-heat-P</th>
<th>△P-P</th>
<th>mg%</th>
<th>mg%</th>
<th>mg%</th>
<th>mg%</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>25.5</td>
<td>6.96</td>
<td>150.0</td>
<td>139.9</td>
<td>174.9</td>
<td>35.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>20.5</td>
<td>7.00</td>
<td>110.0</td>
<td>125.8</td>
<td>148.3</td>
<td>22.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>21.0</td>
<td>6.98</td>
<td>145.0</td>
<td>127.9</td>
<td>152.0</td>
<td>24.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>28.5</td>
<td>7.07</td>
<td>195.0</td>
<td>134.9</td>
<td>174.9</td>
<td>40.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>75.0</td>
<td>120.0</td>
<td>139.0</td>
<td>19.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>103.3</td>
<td>133.3</td>
<td>30.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1,000.0</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

（6）ソウハチカレイ

<table>
<thead>
<tr>
<th>部</th>
<th>収縮率 %</th>
<th>(p) 値</th>
<th>Glycogen</th>
<th>in-Orgin-P</th>
<th>min-heat-P</th>
<th>△P-P</th>
<th>mg%</th>
<th>mg%</th>
<th>mg%</th>
<th>mg%</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>17.4(18.7)</td>
<td>6.40(6.35)</td>
<td>506.6(370.6)</td>
<td>118.5(118.5)</td>
<td>136.6(136.6)</td>
<td>18.5(18.3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>20.0(20.7)</td>
<td>6.45(6.55)</td>
<td>370.6(380.0)</td>
<td>115.0(109.5)</td>
<td>133.3(125.8)</td>
<td>18.3(16.3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>24.6(24.0)</td>
<td>6.60(6.70)</td>
<td>410.0(-)</td>
<td>115.0(-)</td>
<td>135.0(-)</td>
<td>20.0(-)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(7) マサバ

<table>
<thead>
<tr>
<th>部 位</th>
<th>収縮率%</th>
<th>pH 値</th>
<th>Glycogen mg%</th>
<th>in-Organic-P mg%</th>
<th>7min-heat-P mg%</th>
<th>7min-P mg%</th>
</tr>
</thead>
<tbody>
<tr>
<td>A₁</td>
<td>13.4</td>
<td>6.60</td>
<td>783.4</td>
<td>129.9</td>
<td>166.6</td>
<td>36.7</td>
</tr>
<tr>
<td>A₂</td>
<td>10.5</td>
<td>6.40</td>
<td>496.6</td>
<td>125.8</td>
<td>160.1</td>
<td>34.3</td>
</tr>
<tr>
<td>A₃</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>B₁</td>
<td>13.0</td>
<td>6.40</td>
<td>1,133.4</td>
<td>133.3</td>
<td>174.9</td>
<td>41.6</td>
</tr>
<tr>
<td>B₂</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>B₃</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C</td>
<td>14.9</td>
<td>6.65</td>
<td>843.4</td>
<td>133.3</td>
<td>174.9</td>
<td>41.6</td>
</tr>
<tr>
<td>D</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>E</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>F</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>R</td>
<td>8.5</td>
<td>6.30</td>
<td>486.6</td>
<td>65.0</td>
<td>81.6</td>
<td>16.6</td>
</tr>
</tbody>
</table>

(8) マダイ

<table>
<thead>
<tr>
<th>部 位</th>
<th>収縮率%</th>
<th>pH 値</th>
<th>Glycogen mg%</th>
<th>in-Organic-P mg%</th>
<th>7min-heat-P mg%</th>
<th>7min-P mg%</th>
</tr>
</thead>
<tbody>
<tr>
<td>A₁</td>
<td>21.0</td>
<td>6.52</td>
<td>150.0</td>
<td>129.9</td>
<td>156.6</td>
<td>26.7</td>
</tr>
<tr>
<td>A₂</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A₃</td>
<td>17.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>151.6</td>
<td>23.3</td>
</tr>
<tr>
<td>B₁</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>B₂</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>B₃</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C</td>
<td>29.5</td>
<td>6.55</td>
<td>133.4</td>
<td>129.9</td>
<td>166.6</td>
<td>36.7</td>
</tr>
<tr>
<td>D</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>E</td>
<td>26.0</td>
<td>6.40</td>
<td>173.4</td>
<td>116.0</td>
<td>144.1</td>
<td>28.1</td>
</tr>
<tr>
<td>F</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>R</td>
<td>10.5</td>
<td>6.20</td>
<td>100.5</td>
<td>117.0</td>
<td>16.5</td>
<td></td>
</tr>
</tbody>
</table>

(9) ブリ

<table>
<thead>
<tr>
<th>部 位</th>
<th>収縮率%</th>
<th>pH 値</th>
<th>Glycogen mg%</th>
<th>in-Organic-P mg%</th>
<th>7min-heat-P mg%</th>
<th>7min-P mg%</th>
</tr>
</thead>
<tbody>
<tr>
<td>A₁</td>
<td>4.2</td>
<td>6.10</td>
<td>350.0</td>
<td>89.1</td>
<td>132.1</td>
<td>43.0</td>
</tr>
<tr>
<td>A₂</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A₃</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>B₁</td>
<td>5.4</td>
<td>6.27</td>
<td>-</td>
<td>65.0</td>
<td>111.6</td>
<td>46.6</td>
</tr>
<tr>
<td>B₂</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>B₃</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C</td>
<td>9.5</td>
<td>6.20</td>
<td>-</td>
<td>72.9</td>
<td>120.0</td>
<td>47.1</td>
</tr>
<tr>
<td>D</td>
<td>11.0</td>
<td>-</td>
<td>-</td>
<td>81.6</td>
<td>115.0</td>
<td>33.4</td>
</tr>
<tr>
<td>E</td>
<td>6.5</td>
<td>-</td>
<td>-</td>
<td>70.8</td>
<td>95.0</td>
<td>24.2</td>
</tr>
<tr>
<td>F</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>R</td>
<td>8.0</td>
<td>6.30</td>
<td>630.0</td>
<td>33.3</td>
<td>55.3</td>
<td>22.0</td>
</tr>
</tbody>
</table>
魚の鮮度に関する研究

<table>
<thead>
<tr>
<th>部位</th>
<th>収縮率 %</th>
<th>pH 値</th>
<th>Glycogen量</th>
<th>in-Org-C</th>
<th>min-heat-P</th>
<th>P-L</th>
<th>P - p</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>19.0</td>
<td>6.95</td>
<td>163.4</td>
<td>83.3</td>
<td>123.8</td>
<td>40.5</td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>B</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>B2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C</td>
<td>24.5</td>
<td>6.85</td>
<td>206.6</td>
<td>93.3</td>
<td>145.3</td>
<td>55.0</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>16.5</td>
<td>6.60</td>
<td>66.6</td>
<td>125.0</td>
<td>149.0</td>
<td>24.0</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>F</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>R</td>
<td>5.0</td>
<td>6.40</td>
<td>265.0</td>
<td>44.5</td>
<td>64.3</td>
<td>19.5</td>
<td></td>
</tr>
</tbody>
</table>

(III) ナマズ

<table>
<thead>
<tr>
<th>部位</th>
<th>収縮率 %</th>
<th>pH 値</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>26.8</td>
<td>7.00</td>
</tr>
<tr>
<td>A2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A3</td>
<td>10.2</td>
<td>6.95</td>
</tr>
<tr>
<td>B1</td>
<td>36.9</td>
<td>7.03</td>
</tr>
<tr>
<td>B2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>B3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C</td>
<td>19.4</td>
<td>7.15</td>
</tr>
<tr>
<td>D</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>E</td>
<td>21.5</td>
<td>7.10</td>
</tr>
<tr>
<td>F</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>R</td>
<td>-</td>
<td>6.70</td>
</tr>
</tbody>
</table>

V 考察

(1) 筋肉の運動性と収縮率との関係

供試魚であるコイ、ナマズ（以上淡水魚）、マグダ、ミシマオコセ、ドチザメ、マサバ、マダイ、クロダイ、ソウハチワレ、ブリおよびトビウオ（以南海水魚）等11種の魚類の游泳状態を、水族館の水槽内で観察した結果を記載すれば次の如くであり、それをまとめたものが第3表である。

従来体型上から、一般に活動的な魚と考えられておったドチザメは、昼間は殆んと游泳せず夜間においてのみ行動し、しかもその游泳もまた極めて不活発で活動的ではなかった。また従来游泳に不適当な体型であって、不活発と考えられておったマグダ、ナマズ、ミシマオコセは、卵殻または卵殻の場には比較的活発且つ急速な游泳運動を行った。また各種の魚類は、魚種毎にその游泳方法が異り、従ってその運動部位が皆それぞれ異っていた。

以上の観察結果から次のことことがわかる。すなわち急速な游泳を行う場に、主として体の後半部を使用するコイ、マダイ、クロダイ、ブリ、サバ、トビウオ、マグダ等は、第6区に示すようにいずれも卵殻中央部及び尾部の背側筋、特に体の後半部の背側筋の換気率が大きく、体前半部の背側筋の換気率が少ない。一方体全体を屈伸して游泳するミシマオコセ、ドチザメ、ナマズ等では、背側筋の換気率は部位によって大差
野口栄三郎

異なく、むしろ前半部の背鰭筋は後半部の背鰭筋よりもその収縮率が大きい。
またナルメス、ドナメス、トピオウのように、游泳に際し鰭をあまり使用しない魚類では、胸鰭拍動あるいは前鰭拍動と速路のある側面鰭筋の収縮率は小さく、マダイ、クロダイ、ミシマコゼのように游泳の際によく鰭筋を使用する魚類では、これに反しこれらの筋肉の収縮率は大きい。またマグサのように背鰭および尾鰭を良く使用する魚類では、これらの鰭の拍動及び筋金の収縮率が大きい。
さらに普通の魚類では背鰭筋、背骨筋上部筋の部、すなわち体の中央部から外側の筋になるに従い収縮率が小さくなるが、ソウラユウライのように体が扁平で、常に前鰭及び尾鰭を使用して渦泳型の游泳を行うものでは、これと全く対照的に、体の中央部にある背鰭筋の収縮率が最も小さく、下鰭筋、尾骨筋上部筋の順に収縮率が大きい。

第3表 各魚類の游泳状況と運動部位

<table>
<thead>
<tr>
<th>学名</th>
<th>名</th>
<th>和名</th>
<th>正常な状態</th>
<th>異状の場合（恐怖、掻鉤等）</th>
<th>夜間行動</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyprinus carpio</td>
<td>コイ</td>
<td>普通</td>
<td>背びれ</td>
<td>早い</td>
<td>尾びれ</td>
</tr>
<tr>
<td>Parasilurus asotus</td>
<td>ナマズ</td>
<td>深い</td>
<td>全身</td>
<td>早い</td>
<td>全身</td>
</tr>
<tr>
<td>Triakis scyllium</td>
<td>ドナメス</td>
<td>深い</td>
<td>全身</td>
<td>早い</td>
<td>全身</td>
</tr>
<tr>
<td>Sphoroides rubripes</td>
<td>マグサ</td>
<td>深い</td>
<td>背びれ、尾びれ</td>
<td>早い</td>
<td>尾びれ</td>
</tr>
<tr>
<td>Uranoscopus japonicus</td>
<td>ミシマコゼ</td>
<td>深い</td>
<td>背びれ</td>
<td>普通</td>
<td>全身</td>
</tr>
<tr>
<td>Sparus scinoni</td>
<td>クロダイ</td>
<td>普通</td>
<td>背びれ、尾びれ</td>
<td>早い</td>
<td>尾びれ</td>
</tr>
<tr>
<td>Cleithenus herzensteini</td>
<td>ソウラユウライ</td>
<td>深い</td>
<td>背びれ、尾びれ</td>
<td>早い</td>
<td>背びれ、尾びれ</td>
</tr>
<tr>
<td>Scomber japonicus</td>
<td>マサバ</td>
<td>早い</td>
<td>後半身（尾びれ）</td>
<td>早い</td>
<td>後半身</td>
</tr>
<tr>
<td>Pagrosomus major</td>
<td>マグサ</td>
<td>普通</td>
<td>背びれ、尾びれ</td>
<td>早い</td>
<td>尾びれ</td>
</tr>
<tr>
<td>Seriola quinqueradiata</td>
<td>ブリ</td>
<td>早い</td>
<td>後半身（尾びれ）</td>
<td>早い</td>
<td>後半身</td>
</tr>
<tr>
<td>Cypsiurus ago</td>
<td>トピオウ</td>
<td>普通</td>
<td>尾びれ</td>
<td>早い</td>
<td>尾びれ</td>
</tr>
</tbody>
</table>

以上のこととは加藤[65]（'53）が骨格筋の構造的観察研究から、普通の魚類では体の屈伸に主動的役割を示すものの、電気筋ではなく背側筋および側面筋であると述べていることからも、電流による筋肉の収縮量が生前の筋肉の運動性と密接な関係があることを示している。
またブリ、サバ等の骨格筋、あるいはマグサ、トピオウ等の全身魚類の茎合筋のような赤色肉は一般に収縮率が小さいが、コイ、ナマズ、タイ等の電気筋、あるいはマグサの背筋及び尾鰭筋等は赤色筋に属するものであるにもかかわらず、比較的収縮率は大きい。すなわち同一魚種においても、外見上激しい運動をなし得る部位の筋肉ほど収縮率が大きいことがある。また各魚種間においても、その運動性と筋肉収縮率との間には明かに正の相関が見られる。すなわち白身魚類では、運動の不活発なトピオウの収縮率は小さく10〜20%内外であるが、タイ類、コイ等では20%以上、マグサ、ナマズ、ミシマコゼ等では予想以上に大きく20〜30%内外である。
マグサ、ミシマコゼ、ナマズ等は、従来体型上から運動が不活発であると想像されておったが、さきに
述べたように，飼料摂取の場合と飼った時には，極めて短時間であるけれども，急速な激しい游泳運動を行っている。このような体験上運動が極めて不適当な状態が，急速な游泳を行うためには，運動部位の筋肉は極めて激しくかつ強大な運動を行わなければならないことが想像される。

一方サバ，ブリ等は外見上極めて活発かつ急速な游泳を行う魚類でありながら，その筋肉の収縮率は予想に反して小さかった。サバ，ブリ等の游泳は他の魚類と異なって，横幅推進状の運動を行うために，筋線維の配列が定然が他の魚類と異っており，

（38）というされているので，試料筋肉片の変形に不備があったのであたかも変化考えられる。しかし，これらの原因復活性筋は極めて游泳に適する体形であるから，僅かの筋肉運動によっても，その游泳速度は極めて大となり，游泳に不適当な体形であるミシマコイ，フグ等の定著性魚類に比較すれば，融かの筋肉運動では急速な游泳を行い得るということは容易に想像される。

既に Needham（1914）は，これらの間接性魚類の筋肉（骨格筋）と，コイ，タイ，ミシマコイのような定著性魚類の筋肉（骨格筋）との性格的な差異について，「白色筋（定著性魚類）は極めて短時間の運動に適しており，赤色筋（間接性魚類）は比較的遅鈍なかつ持続的な運動に適している」（39）と述べているが，間接性魚類と定著性魚類との間の渦流による筋収縮の差異が見られるのは，このような筋肉間の性格の差によるものであろう。

（2）筋肉の運動性と pH 値との関係

河端（1952）は，死後初期の鮮度良好なサバ，マサバ，コイ，タイ類，ミシマコイ，トウヒサバなどの定著性魚類の筋肉，鰭腎筋を，顔面筋を，顔面筋不動肌および血液中的 pH 値は普通肉において比較して幾分高いか，これからの筋肉の乳酸値は減少し，筋肉の pH 値は乳酸値との関係には負の相関があることを報告し，河端（1952）は，断頭および音波死のサザダマサバについて，魚体各部位の筋肉 pH 値を測定し，断頭死区では血液中の pH 値は胎盤と普通肉の間には pH 値の変動を認めずかかつ普通肉がやや高いが，断頭死区では，断頭の場合と同様に，明らかに血液中の pH 値が普通肉より低い傾向を示している。

著者の研究結果は第 2 表に示すように，マサバ，コイ，タイ類，ミシマコイ，トウヒサバのような定著性魚類の筋肉，サバのような赤肉魚類の筋肉を pH 値が高くない，また普通肉と血液肉との間では，全体的に血液肉が幾分低い傾向を示している。

すなわち，これは河端および天野の実験結果とは幾分異なる，そこで著者は断頭死を行ったマサバの普通肉及び血液肉を，それぞれ 20℃に放置して，筋肉 pH 値の変化を観察し，第 4 表に示すような結果を得た。これを図示すれば第 7 表が得られる。すなわち筋肉 pH 値の変化は普通肉より血液肉の方が速やかで，pH 値の低下及び上昇が早く，従って血液肉の解体作用は速やかに進行完了すると言われる。この結果から，河端等の行った実験においては，魚種があり，既に断頭血液肉あるいは血液肉の魚肉を試料に供したために，普通肉の pH 値は速かに血液肉よりも低下しておったものと思われる。従っての断頭死区における観察は，断頭によって普通筋が激しく運動し，そのために血液肉の pH 値が普通肉より速かに低下しておったためではないかと考えられ，断頭死区における観察が比較的生肉の筋肉 pH 値に近似するものであろう。すなわちこれらの数値は異なるが，その傾向は著者の観察結果とよく一致している。

従来報告されている魚類の死後の筋肉 pH 値を表示すると第 5 表に示すように，一般に生肉時筋肉 pH 値は 7.0 でも示すものと思われる。しかし既に天野，河端等が報告をおこなっているように，これらの筋肉 pH 値は致死条件及び死後の解体作用によって急速に変化するものである。特に後述（第 4 章第 1 篇 10）のように，サバのような間接性魚種では，魚の状態によってもその筋肉 pH 値は急速に低下する。この実験ではサバ及びサバの観察値が鮮かに低下するが，その原因はこのような致死前あるいは致死の際の影響もあったのではないかと思われる。しかしこのような事実から，主として筋肉 pH 値の部位による変異は運動に直接関係のある ATPase を初め，他の transphosphatase の変動 pH 値に関係のある，生理的変因によるものと考えた方が妥当であろうか。すなわち
(1) 第2表に示した実験結果から、筋肉の収縮率と筋肉pH値との関係を示すば第8図が得られる。pH値の低い筋肉は一般に収縮率が大きく、かつ急速に収縮が行われるが、pH値の低い筋肉はその収縮率が少ない。

(2) 一般にコイ、マダイ、トビウオ等の血合肉はそのpH値が低く、収縮率も小さいが、筋肉は縦脈管筋は血合肉と同じく赤色肉に属するものであるに拘らず、そのpH値が高く、かつ収縮率も大きい。

(3) ATPをADPに分解するATPase(7)、あるいはADPをAdenylic acidに分解するとともにATPを再合成するMyokinase(2)、またはATPからFructose-6-phosphateにPhosphateを転移させる移動酵素等の至適pH値はいずれも7.0附近にあって、6.0以下となればその作用は急速に阻害されるといわれているが、筋肉pH値と収縮率との関係もほぼこれと同様の傾向を有し、中性に近づく程収縮率が大きくなることが第8図から明らかに見られる。

(4) 剣頭アサの背側筋2gを直ちに種々のpH値を有する鰭試験液に10CC中に15分間(15℃)浸漬した後、Creatine-phosphate-P（CP-P）（CP-Pの定量はLepage(69)(71)の方法に準拠して行った）及びGlycogen量を測定し、死直後の筋と比較したものが第6表である。第9図は第6表を図示したものである。すなわちGlycogenの減少はpH 7.0附近において最も少なく、Creatine-phosphate（CP-P）の減少は最も多い。
以上の事実から、死直後の肉体各部位における筋肉pH値の差異は、少なくとも生存時におけるその運動性と密接な関係があり、短時間に急速な運動を行う部位では、ATPase等のTransphosphataseに密合するように高pH値を保持する必要があり、一方持続的であるが急速な激しい運動をされ程度の部位のない部位では、pH値は比較的低くてもよいことが予想される。しかし苦悶時の場合には苦悶の際に激しい運動や振挙を行う背側筋等のpH値は、急速に低下することが考えられるので、直後死の場合とは異った数値を示すこともあると考えられる。

以下、サバの大きな赤肉魚類の筋肉pH値が低く、その収縮率が小さいことが述べと全く同じ理由に基くものと考えられる。すなわち、これらの回復性魚類は絶えず持続的な運動を行う必要があり、運動筋は極めて大きくと予想される。そのためにはATP酸も欠くものであると同時に、ATP過酸化性を絶えず結合するためのGlycogen量が多く、解離作用が旺盛でなければならない。また第6表に示したように、Glycogenの分解が酸化性においてより旺盛に行われることも、これに関連しているものと思われる。なお既述のように、一般にこのような回復性魚類の体形は流体型で、外界に対する抵抗が小さく、極めて激しいこと、他の筋肉運動によるも急速な解離が可能であるから、極めて激しい急速な筋肉運動を行う必要はないと考えられる。

第4表 焼時(20℃)に貯藏した場合の筋肉pH値の変化

(直後死のマサバ)

<table>
<thead>
<tr>
<th>時間</th>
<th>背筋</th>
<th>腹筋</th>
<th>血合肉</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>6.65(1)</td>
<td>6.50</td>
<td>6.15(1)</td>
</tr>
<tr>
<td>1.00</td>
<td>6.45</td>
<td>6.50</td>
<td>5.95</td>
</tr>
<tr>
<td>1.30</td>
<td>6.35</td>
<td>5.90</td>
<td>5.80</td>
</tr>
<tr>
<td>2.00</td>
<td>6.38</td>
<td>6.20</td>
<td>5.70</td>
</tr>
<tr>
<td>3.00</td>
<td>6.05</td>
<td>5.70</td>
<td>5.70</td>
</tr>
<tr>
<td>4.00</td>
<td>6.00</td>
<td>5.70</td>
<td>5.95</td>
</tr>
<tr>
<td>5.00</td>
<td>6.00</td>
<td>5.70</td>
<td>5.70</td>
</tr>
<tr>
<td>6.00</td>
<td>5.70</td>
<td>5.70</td>
<td>6.10</td>
</tr>
<tr>
<td>8.00</td>
<td>5.70</td>
<td>5.70</td>
<td>6.00</td>
</tr>
<tr>
<td>9.00</td>
<td>5.70</td>
<td>5.70</td>
<td>6.22</td>
</tr>
<tr>
<td>14.00</td>
<td>5.70</td>
<td>6.22</td>
<td>6.00</td>
</tr>
<tr>
<td>20.00</td>
<td>5.70</td>
<td>6.22</td>
<td>6.00</td>
</tr>
<tr>
<td>24.00</td>
<td>5.70</td>
<td>6.22</td>
<td>6.00</td>
</tr>
<tr>
<td>30.00</td>
<td>5.70</td>
<td>6.22</td>
<td>6.00</td>
</tr>
</tbody>
</table>
魚の鮮度に関する研究

第5表 死直後の魚肉のpH値

<table>
<thead>
<tr>
<th>魚種名</th>
<th>淀藏又は死後方法</th>
<th>p</th>
<th>H</th>
<th>研究者</th>
</tr>
</thead>
<tbody>
<tr>
<td>haddock</td>
<td>餌</td>
<td>7.0</td>
<td>7.3</td>
<td>Beuson, Macpherson</td>
</tr>
<tr>
<td>haddock</td>
<td>底</td>
<td>6.5</td>
<td>6.9</td>
<td>Cutting</td>
</tr>
<tr>
<td>cod</td>
<td>6.05</td>
<td>7.33</td>
<td>Hjorth-Hansen</td>
<td></td>
</tr>
<tr>
<td>halibut</td>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>イス</td>
<td>普通のももの</td>
<td>6.6</td>
<td>6.8</td>
<td>安藤 (57)</td>
</tr>
<tr>
<td>イス</td>
<td>疲労後のもの</td>
<td>6.3</td>
<td>6.7</td>
<td></td>
</tr>
<tr>
<td>ソウダガツオ</td>
<td>断頭死</td>
<td>6.44</td>
<td>7.02</td>
<td>天野 (20)</td>
</tr>
<tr>
<td>ソウダガツオ</td>
<td>落門死</td>
<td>5.71</td>
<td>6.90</td>
<td></td>
</tr>
</tbody>
</table>

第6表 イスの背側筋の解醤作用に及ぼすpHの影響（温度15℃、浸漬時間15分間、リン酸緩衝液使用、試料肉のCP-P含量=18.5mg%，Glycogen含量=840.0mg%）

<table>
<thead>
<tr>
<th>p</th>
<th>H</th>
<th>Creatine phosphate-P (CP-P)</th>
<th>%</th>
<th>%</th>
<th>%</th>
<th>%</th>
<th>%</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.6</td>
<td>6.2</td>
<td>6.6</td>
<td>7.0</td>
<td>7.3</td>
<td>7.7</td>
<td>7.9</td>
<td>8.1</td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td>3.3</td>
<td>3.3</td>
<td>1.8</td>
<td>4.8</td>
<td>8.7</td>
<td>8.7</td>
<td>11.7</td>
<td></td>
</tr>
<tr>
<td>13.7</td>
<td>15.2</td>
<td>15.2</td>
<td>16.7</td>
<td>13.7</td>
<td>9.9</td>
<td>9.8</td>
<td>6.8</td>
<td></td>
</tr>
<tr>
<td>500.0</td>
<td>675.0</td>
<td>610.0</td>
<td>795.0</td>
<td>690.0</td>
<td>640.0</td>
<td>620.0</td>
<td>560.0</td>
<td></td>
</tr>
<tr>
<td>34.00</td>
<td>165.0</td>
<td>230.0</td>
<td>45.0</td>
<td>150.0</td>
<td>200.0</td>
<td>220.0</td>
<td>280.0</td>
<td></td>
</tr>
</tbody>
</table>

第7図 室温（20℃）に放置した場合の筋肉のpH値の変化

〇 右側筋 マサバ (1)
● 血合筋 マサバ (1)
△ 右側筋 マサバ (2)
■ 血合筋 マサバ (2)
第8図 煮流による筋肉の収縮率と筋肉のpH値との関係

第9図 ヨイの筋肉中のCreatine phosphate（C.P-P）とGlycogenの分解に及ぼすpH値の影響（筋肉片は15℃で15分間酸鰹鰪液に浸漬され、その際減少した量を示す）

(3) 筋肉の運動性とGlycogen量との関係

さきに述べたように、激しい運動を行わなくても常に間断なく持続的な運動を行う。すなわち運動量の大
魚の種類に関する研究

取縮率 %

第10図 灌流による筋肉の収縮率と筋肉中の Glycogen 量との関係

- コイ - マグダ - ミシマオコゼ - トビウオ
- ブリ - マサバ - ソウハチカレイ
- マダイ - クロダイ - ドンザメ

以上の図表を用いて、筋肉の収縮率と筋肉中の Glycogen 量との関係を示しています。収縮率は筋肉の機能を反映する指標であり、Glycogen 量は筋肉を活性化させるためのエネルギー源であることを示しています。各魚種の収縮率は、Glycogen 量と密接に関連しており、筋肉の発達度や運動能力を反映している。
第11図 筋肉中の Glycogen 含量と筋肉の pH 値との関係

(4) 筋肉の運動性と Polyphosphate-P 量との関係

第2表から、各魚種について筋肉収縮率と筋肉の△7P−P含量との関係を図示すると、第12図のようになる。すなわち各魚種はいずれも一部の点からなる直線的な関係を示し、その相関関係を求めると、次のようになる。この正の相関が認められる。

<table>
<thead>
<tr>
<th>魚種</th>
<th>N</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>オイ</td>
<td>7</td>
<td>+0.869</td>
</tr>
<tr>
<td>サバ</td>
<td>5</td>
<td>+0.963</td>
</tr>
<tr>
<td>ドナマメ</td>
<td>7</td>
<td>+0.915</td>
</tr>
<tr>
<td>マダイ</td>
<td>4</td>
<td>+0.929</td>
</tr>
<tr>
<td>クロダイ</td>
<td>4</td>
<td>+0.998</td>
</tr>
<tr>
<td>トピウォ</td>
<td>4</td>
<td>+0.995</td>
</tr>
</tbody>
</table>

このことは筋肉の運動性と、△7P−P量の間には極めて密接な関係が存在することを示している。もし運動による筋肉の収縮率が筋肉の運動性を示すものとすれば、Adenyl-polyphosphate 量と筋肉の収縮率との間の強い正の相関が認められることは当然のことであろう。

さらに第12図で見られるように、直線の傾斜角度は魚種によってそれぞれ異なり、その順位は次の如くである。

ブリ→サバ→オイ→トピウォ→ドナマメ→クロダイ→コイ→マダイ→ミシマオコゼ→ソウハチガレイ→マグダ

この順位は魚類の回游時の速度又は回游範囲、あるいはその体型と密接な関係があることが想像される。すなわち、このことは体型が游泳に適し、広範囲回游を行う魚類は、回游を行わず游泳に不適当な体型を持つ魚類に比較して、同一程度の筋肉運動を行うためには、態に多量の Adenyl-polyphosphate を必要とすることを意味している。

このことは、回游性魚類は極度に運動するため運動量が大きく、従って常に多量の polyphosphate を消費せねばならないことに関連していると思われる。すなわち、このためには解糖作用が旺盛に行われなければならないが、その為には筋肉中に多量の Glycogen を含むと共に、既述した如く、筋肉のpH値は酸性
魚の鮮度に関する研究

性にあることが都合よく、遂に筋収縮率は小さくなると思われるからである。

そしてこのことは従に述べたように、定着性魚類はその体型上から、急速な游泳を行うためには、極めて激しい急速な筋肉運動を行わねばならないが、回遊性魚類は極めて僅かの筋肉運動によっても、急速な游泳を行うことができるから、同一程度の游泳を行うためには、回遊性魚類は定着性魚類に比して、はるかに僅少の筋肉運動で足りるわけであろう。

第12図 潮流による筋肉の収縮率と筋肉中のΔ7P-P量との関係

△ コイ ○ マグダラ ▲ ミシマコゼ ○ トビウオ
△ ブリ ○ マサバ ○ ソウハチウナメイ
○ マグサ ▲ クロダイ □ ドチザメ
第3章 濁流による筋収縮の機構に関する研究

濯流による筋肉の収縮を起す原因ならびに機構を明らかにする目的で、物理的及び化学的両分野から研究を行った。

第1節 物理的分野

1. 濁度

新鮮な筋肉を水に浸漬した場合に生ずる自発的な筋肉収縮の現象については、その原因としてまず溢度変化が考えられる。しかし、このことに関しては淵野(16)、枯野(20)等が NaCl 又は KCl、CaCl₂ 溶液等を用い、また Heilbrum(11)、(20)が CaCl₂、SrCl₂、BaCl₂、NaCl、KCl、MgCl₂ 溶液等を用いて研究を行っている。

第2表 有機に示した魚の筋肉の NaCl 澄溶液による収縮率の変化

<table>
<thead>
<tr>
<th>試料</th>
<th>死後経過時間</th>
<th>無 溶 液</th>
<th>1.5mol</th>
<th>0.1mol</th>
<th>0.01mol</th>
<th>0.001mol</th>
</tr>
</thead>
<tbody>
<tr>
<td>a₁</td>
<td>0時間</td>
<td>14.1%</td>
<td>11.2%</td>
<td>2.1%</td>
<td>4.1%</td>
<td>10.6%</td>
</tr>
<tr>
<td>a₂</td>
<td>4</td>
<td>10.6%</td>
<td>10.5%</td>
<td>1.2%</td>
<td>5.3%</td>
<td>6.5%</td>
</tr>
<tr>
<td>a₃</td>
<td>8</td>
<td>7.3%</td>
<td>9.0%</td>
<td>0.0%</td>
<td>3.0%</td>
<td>4.8%</td>
</tr>
<tr>
<td>a₄</td>
<td>12</td>
<td>0.0%</td>
<td>—</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>b₁</td>
<td>0</td>
<td>11.6%</td>
<td>11.2%</td>
<td>2.0%</td>
<td>4.0%</td>
<td>10.3%</td>
</tr>
<tr>
<td>b₂</td>
<td>4</td>
<td>8.6%</td>
<td>10.2%</td>
<td>0.6%</td>
<td>1.2%</td>
<td>2.3%</td>
</tr>
</tbody>
</table>

試料 a₁ は 0 時間で、試料 a₂ は 4 時間後、試料 a₃ は 8 時間後、試料 a₄ は 12 時間後、試料 b₁ は 0 時間後、試料 b₂ は 4 時間後の状態における NaCl 溶液による収縮率を示している。

第13回 鮮度を異にした魚の筋肉の種々の濃度の食塩水で
濯流した場合の筋肉収縮率の変化

(濯流時間10分間、魚の温度20℃)

O→XII 死後経過時間 (貯蔵温度 20℃)

等を用いて研究し、既に溢度変化によるものではないことを明らかにしている。

魚肉を対象とさせるこのような研究、特にその鮮度との関係についての研究は全く行われておらないので、これを確かめるため、鮮度の異ったなわち死後時間を異にした断頭処理の魚肉を、種々の濃度の食塩水中で濯流し、筋肉収縮率を測定した。その結果は第2表に示すようである。第13図は第2表を図示したものである。

筋肉収縮率は筋肉と等イオン強度に近い 0.1mol の NaCl 溶液の場合に最も小さく、これを離れるに従って大きくなる。又死後時間の経過に伴い筋肉の収縮率は小さくなるが、この小さくなる割合は潮流液の食塩濃度が薄い場合程著しい。

この実験では Na⁺及びCl⁻イオンの影響を考えられるので、次に NaCl 溶液の代わりに各種の濃度の食塩水を使用して実験した。結果は第8表に示す如くである。すな
第 8 表 应応液による筋収縮率の変化（試料断頭死直後のギズの背側筋）

<table>
<thead>
<tr>
<th>試 料</th>
<th>蒸 潤 水</th>
<th>应 応 液</th>
<th>の 濃 度</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 1</td>
<td>28.5%</td>
<td>5.0%</td>
<td>10.0%</td>
</tr>
<tr>
<td>No. 2</td>
<td>25.0%</td>
<td>23.5%</td>
<td>24.0%</td>
</tr>
</tbody>
</table>

ii 含水量（脱水作用）

断頭死直後のギズの背側筋を、種々の濃度のエチルアルコール溶液で灌流し、その筋肉収縮率を測定し、その結果を第9表に示すようである。第14図は第9表を図示したものである。すなわちアルコール濃度が高いほど脱水されて、筋肉中水分含有量は少くなり、筋肉の収縮率は小さい。特に脱水の影響が詳しく見られることになる。第 9 表 各種濃度のエチルアルコール溶液で灌流した場合の筋肉の収縮と含水量並びに△7P-P量の変化（試料切断死直後のギズの背側筋、ギズの△7P-P量 23.6mg%、水分量 79.97% 灌流時間及び温度 20℃ 10分間）

<table>
<thead>
<tr>
<th>アルコール濃度</th>
<th>0%</th>
<th>25%</th>
<th>50%</th>
<th>75%</th>
<th>99.5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>筋収縮率 %</td>
<td>18.5</td>
<td>10.0</td>
<td>5.0</td>
<td>4.8</td>
<td>4.0</td>
</tr>
<tr>
<td>含水量 %</td>
<td>81.66</td>
<td>30.24</td>
<td>79.32</td>
<td>78.92</td>
<td>77.34</td>
</tr>
<tr>
<td>残存した△7P-P量 mg%</td>
<td>4.0</td>
<td>10.2</td>
<td>21.3</td>
<td>-</td>
<td>23.8</td>
</tr>
<tr>
<td>減少した△7P-P量 mg%</td>
<td>19.6</td>
<td>13.4</td>
<td>2.9</td>
<td>-</td>
<td>-0.2</td>
</tr>
</tbody>
</table>

第14図 ギズの背側筋を種々の濃度のアルコール溶液で灌流し、筋肉中の収縮率の変化（灌流時間10分間、温度20℃）

- - - 筋肉の収縮率 - - - 筋肉中△7P-P量

この結果は、アルコール濃度 50% 以上では、その収縮率は極めて小さくかつ濃度による変化も小さい。またこの場合には、筋肉および灌流液中で分解しないで残存する△7P-P量が多く、特に50%以上の濃度の場合には殆んと分解されないで残存している。このことは ATP 等を分解する ATP-ase 等の phosphatase の作用がアルコールによって阻害されるためか、あるいはアルコールの脱水凝固作用等に由来する蛋白変性により、Adenyl-Polyphosphate 等の分解が行われないで収縮しなかったものと思われる。
水温

断頭死直後のコイの背側筋を、種々の温度の蒸留水および食塩水で灌流し、筋肉の収縮率を測定し、その結果を第15図に示した。

従来鴨肉の洗浄をする場合には、冷凍水を使用することが常識とされ、温水を使用することは鴨肉が素早く不衛とされておいた。しかし、実際には第15-1図に見られるように、予想に反して筋肉の収縮率は低温度の場合には小さく、温度の上昇とともに大きくなり、20℃附近で最大となり、25℃附近では一旦低下するが、その後再び温度の上昇と共に急激に大きくなる。

筋肉収縮はATP-ase等の作用によって、筋肉内のATP等が分解される際に生ずるエネルギーによって行われるものとすれば、この事実は当然であって、20℃附近が至適温度と考えられる。30℃附近以上の温度で収縮率が大きくなるのは酵素作用による筋収縮ではなく、蛋白の熱凝固によって起こった現象であると考えられる。なぜなら、一般に魚肉中には30～35℃附近で熱凝固を起こす蛋白（α-シロ）の存在することが確かめられているからである。第15-2図は食塩水で灌流した場合であり、温度の影響は第15-1図と同様の傾向を示しているが、25℃附近における収縮率の増減は殆ど認められない。

これは恐らく食塩の筋収縮阻害作用と熱凝固促進作用の影響によるためであろう。

第2節 化学的分野

1 塩類

第7表から、魚肉の灌流による収縮率は塩類によって影響されることが明らかに予想されるのでこの実験を行った。なおこの場合には、限られた時間内に多量の試料を灌流すわけなければならないので、やむを得ず灌流時間を6分間としたが、全収縮量の90％以上がこの時間中に収縮する（第9図）から、このような塩類の影響を比較するにはさほど
第10表 液流による筋収縮におよぼす陽イオンの影響（断頭死直後のコイの背側筋、液流時間6分、液流液の温度20°C、蒸溜水による筋収縮率は20.0%）

<table>
<thead>
<tr>
<th>濃度 mol</th>
<th>0.001</th>
<th>0.01</th>
<th>0.1</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>KCl</td>
<td>19.8</td>
<td>16.8</td>
<td>9.5</td>
<td>2.5</td>
</tr>
<tr>
<td>NaCl</td>
<td>15.7</td>
<td>12.2</td>
<td>4.0</td>
<td>2.0</td>
</tr>
<tr>
<td>CaCl₂</td>
<td>20.0</td>
<td>22.5</td>
<td>27.8</td>
<td>34.6</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>6.0</td>
<td>4.7</td>
<td>3.0</td>
<td>1.0</td>
</tr>
<tr>
<td>CuCl₂</td>
<td>—</td>
<td>20.0</td>
<td>20.4</td>
<td>20.5</td>
</tr>
</tbody>
</table>

第16図 液流による筋肉の収縮に及ぼす陽イオンの影響
断頭死コイの背側筋、液流時間6分間、温度20°C

第11表 液流による筋収縮におよぼす陰イオンの影響（断頭死直後のコイの背側筋、液流時間6分、液流液の温度20°C、蒸溜水による筋収縮率は22.6%）

<table>
<thead>
<tr>
<th>濃度 mol</th>
<th>0.001</th>
<th>0.01</th>
<th>0.1</th>
<th>1.0</th>
<th>3.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>KI</td>
<td>23.7%</td>
<td>12.8%</td>
<td>2.9%</td>
<td>0.7%</td>
<td>0%</td>
</tr>
<tr>
<td>KNO₃</td>
<td>21.1</td>
<td>13.6</td>
<td>4.8</td>
<td>6.0</td>
<td>7.2</td>
</tr>
<tr>
<td>KCl</td>
<td>20.2</td>
<td>16.5</td>
<td>4.8</td>
<td>8.6</td>
<td>6.9</td>
</tr>
<tr>
<td>KBr</td>
<td>20.1</td>
<td>14.7</td>
<td>2.0</td>
<td>5.9</td>
<td>—</td>
</tr>
<tr>
<td>KCNS</td>
<td>22.9</td>
<td>15.5</td>
<td>3.0</td>
<td>2.7</td>
<td>3.6</td>
</tr>
</tbody>
</table>

(2) K⁺の濃度が0.05molの場合には、Ca⁺⁺の濃度が0.05molの場合のにのみ僅かに促進され、Ca⁺⁺の濃度がこ
れより濃厚または稀薄な場合には阻害される。
(3) **K**' の濃度が0.005mol以下の場合には、Ca**+**の濃度が0.005mol以上の場合には常に促進される。

なお第18図から、CaCl**2** の促進作用が **KCl** によって阻害される傾向が明瞭にうかがわれる。

第17図 瀧流による筋肉の収縮に及ぼす陰イオンの影響

断頭死コイの背側筋、瀧流時間6分間、温度20℃

○ --- **KCl** 液 ● --- **KNO**3 液 ▲ --- **KCl** 液
△ --- **KBr**液 × --- **KCNS**液

第12表 塩化カリ及び塩化カルシウムの等量混合液（混合液中の濃度はこの半分となる）による筋収縮率の変化（断頭死直後のコイの背側筋、瀧流時間10分、温度20℃、蒸溜水による筋収縮率＝28.1％）

<table>
<thead>
<tr>
<th>KCl液</th>
<th>0.001 mol.</th>
<th>0.01 mol.</th>
<th>0.1 mol.</th>
<th>1.0 mol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CaCl2液</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.001 mol.</td>
<td>24.7％</td>
<td>39.9％</td>
<td>41.6％</td>
<td>37.3％</td>
</tr>
<tr>
<td>0.01 mol.</td>
<td>8.6％</td>
<td>29.6％</td>
<td>39.9％</td>
<td>35.2％</td>
</tr>
<tr>
<td>0.1 mol.</td>
<td>2.3％</td>
<td>10.9％</td>
<td>30.7％</td>
<td>23.7％</td>
</tr>
<tr>
<td>1.0 mol.</td>
<td>2.9％</td>
<td>9.0％</td>
<td>23.3％</td>
<td>20.0％</td>
</tr>
</tbody>
</table>

生筋の運動時にカリの結合解離が行われることは一般に認められておるが、瀧流による筋収縮の場合にも、瀧流によって蛋白からカリの解離が行われると想像出来る。すなわち**KCl** またはNaCl溶液で瀧流する場合に、瀧流液中の陽イオンの濃度が増加し、次第に筋肉中のカリイオンの濃度に近づくほど筋肉の収縮率が小さくなるが、このことは瀧流液中の陽イオンの濃度が蛋白中のカリイオンの濃度に近づくほど、蛋白と結合しているカリイオンが解離され難くなり、従って筋肉収縮が難しくなる機構をとるであろう。

また筋肉中のカリイオン濃度以上の濃厚溶液で瀧流する場合に、陽イオンの種類による影響が弱まり、陰イオンの影響が現われることは、イオンの酵素作用に対する影響や蛋白変性の影響等も考えられるが、主として
魚の鮮度に関する研究

第18図 塩化カリウム及びカルシウムの等量混合溶液によるヨイ臓側筋の収縮率の変化（浸漬時間10分間、温度20℃）

第13表 各濃度のNaCl溶液中に、断頭死後のヨイ臓側筋を浸漬した場合の吸水率の変化
（試料臓側筋の水分量=81.44％、浸漬時間=20℃，15分）

<table>
<thead>
<tr>
<th>食塩濃度 mol</th>
<th>2.0</th>
<th>1.0</th>
<th>0.1</th>
<th>0.01</th>
<th>0.001</th>
<th>0.0001</th>
<th>蒸留水</th>
</tr>
</thead>
<tbody>
<tr>
<td>水分量 %</td>
<td>79.52</td>
<td>85.04</td>
<td>84.36</td>
<td>84.76</td>
<td>85.84</td>
<td>85.88</td>
<td>85.94</td>
</tr>
</tbody>
</table>
第13表から明らかのように、NaCl溶液中に筋肉が浸漬された場合には、筋肉の吸水量は0.1molの濃度で最も小さく、この濃度を離れるに従い吸水量は増加する。すなわち筋肉収縮率を最も阻害する濃度は、筋肉の吸水量最も小さくなる濃度である。2.0molの濃度ではむしろ脱水が行われているが、これらは恐らく高濃度による塩析の影響が現れたためであろう。

第14表1.0molの種々のカリ塩溶液中に、断頭死直後のコイ背側筋を浸漬した場合の吸水量の変化
（試料背側筋の水分量－83.41％浸漬時間20°C, 15分）

<table>
<thead>
<tr>
<th></th>
<th>漬 液 水</th>
<th>KI</th>
<th>KCNS</th>
<th>KBr</th>
<th>KNO₃</th>
<th>KCl</th>
</tr>
</thead>
<tbody>
<tr>
<td>収 縮 率 %</td>
<td>22.63 %</td>
<td>0.77</td>
<td>2.00</td>
<td>5.54</td>
<td>5.67</td>
<td>8.75</td>
</tr>
<tr>
<td>水 分 量 %</td>
<td>85.66</td>
<td>82.83</td>
<td>83.53</td>
<td>83.36</td>
<td>84.09</td>
<td>84.57</td>
</tr>
</tbody>
</table>

また筋肉が種々のカリ塩類溶液に浸漬された場合における、筋肉の吸水量は第14表から明らかのように、KCNS溶液で最も小さく、KBr, KNO₃, KClの順に多くなり、KI溶液ではむしろ脱水の傾向を示している。すなわち筋肉の脱水を阻害する作用はI⁻＞CNS⁻＞Br⁻＞NO₃⁻＞Cl⁻の順で、筋収縮を阻害する作用の強さの順位と同じである（第12表及び第17図参照）

第19-1図1.0molのカリ塩溶液中に浸漬させた断頭死直後のコイ背側筋の膨満量の時間的变化（15℃）

〇——KI溶液
——×——KCNS溶液
——△——KCl溶液
——△——KBr溶液
——○——蒸溜水

また第19図は、1.0mol溶液の各種陰イオンがコイ背側筋の膨満量に及ぼす影響を示すものであるが、これらの陰イオンは、死直後の筋肉を使用した場合には、浸漬時間によって明らかに異った影響を与えている
ことを見ている。すなわち死後筋肉の筋肉の形態は、浸漬直後はCl＞Br＞NO₃＞CNS＞Iを示す。時間の経過と共に変化し、硫酸による筋肉の現象を示した。浸漬後60分後からは逆転し、I＞CNS＞Cl＞NO₃＞Brを示す。このことから、死後筋肉の変化した不鮮明（20℃、24時間放置）では、初期からI＞CNS＞Br＞NO₃＞Clの順位を示す。

このように浸漬時間長によって筋肉の順位が逆転し、あるいは死後筋肉前のものと筋肉変化後のもので筋肉の順位が全く異なるのは、筋肉の硫酸による収縮と関連して興味のある現象である。

iii Polyphosphate-P, Glycogen および-SH 基

硫酸による筋肉の収縮は筋肉の各部位によって異なり、収縮率の大なる部位の筋肉は△7P-Pの含有が多く、収縮率と△7P-P含有との間に明かな相関（第12図参照）が認められる。この事実より、同一部位の筋肉でも、△7P-P含有が異なれば筋収縮率もまた異なると予想され、これを確かめるために次に実験を行った。すなわち筋肉中の△7P-P含有量は死後時間の経過に伴い次第に減少するから（第20図参照）、断頭および断頭死のカイおよびサバを死後一定時間放置し、一定部位の筋肉について、一定時間経過毎に△7P-P含有と筋収縮率を測定した。結果は第20図に示す如くであつて、筋収縮と△7P-P含有との間に明るい相関が認められる。これらの事実から、筋収縮のエネルギー源は恐らくPolyphosphate-Pであると考えられる。よってさらに次の実験を行った。すなわち蒸留水、0.1molのCaCl₂溶液および0.1molのMgCl₂溶液それぞれ20℃に、断頭死後20分後に筋肉を無作為に選んで浸漬し、20℃に6時間放置後、△7P-P含有の定量を行った。第19表にその結果を示した。

すなわち、筋肉内の△7P-P含有量は筋肉がCaCl₂溶液に浸漬された場合には完全に消失し、MgCl₂溶液に浸漬された場合には殆ど変化がない。蒸留水に浸漬された場合には、初めに存在した量の約25%が消失している。このことは、筋収縮が著しい場合ほど筋肉中の△7P-Pが多量に減少し、筋収縮が行われない場合には全く減少しないことを示している。
第15表 塩化カルシウム及び塩化マグネシウム溶波に浸漬した場合における筋肉の Adenyl polyphosphate (△TP-P) の減少（断頭死直後の一コイの背側筋、浸漬時間 20°C、6分間）

<table>
<thead>
<tr>
<th></th>
<th>試 料</th>
<th>CaCl₂ 0.1mol液</th>
<th>蒸馏水</th>
<th>MgCl₂ 0.1mol液</th>
</tr>
</thead>
<tbody>
<tr>
<td>筋肉</td>
<td>in-Organic-P mg%</td>
<td>105.0</td>
<td>120.0</td>
<td>90.0</td>
</tr>
<tr>
<td></td>
<td>7min-heat-P mg%</td>
<td>136.0</td>
<td>120.0</td>
<td>111.6</td>
</tr>
<tr>
<td></td>
<td>△TP-P mg%</td>
<td>31.0</td>
<td>0</td>
<td>21.6</td>
</tr>
<tr>
<td>浸漬</td>
<td>in-Organic-P mg%</td>
<td>11.7</td>
<td>20.7</td>
<td>11.7</td>
</tr>
<tr>
<td></td>
<td>7min-heat-P mg%</td>
<td>11.7</td>
<td>22.0</td>
<td>11.7</td>
</tr>
<tr>
<td></td>
<td>△TP-P mg%</td>
<td>0</td>
<td>1.3</td>
<td>0</td>
</tr>
<tr>
<td>計</td>
<td>in-Organic-P mg%</td>
<td>105.0</td>
<td>131.7</td>
<td>110.7</td>
</tr>
<tr>
<td></td>
<td>7min-heat-P mg%</td>
<td>136.0</td>
<td>131.7</td>
<td>133.6</td>
</tr>
<tr>
<td></td>
<td>△TP-P mg%</td>
<td>31.0</td>
<td>0</td>
<td>22.9</td>
</tr>
<tr>
<td></td>
<td>消費された△TP-P mg%</td>
<td>31.0</td>
<td>31.0</td>
<td>131.7</td>
</tr>
</tbody>
</table>

次に、断頭死直後のコイの背側筋肉2gを蒸溜水200ml中に浸漬し、20°Cに放置し、一定時間後に Glycogen、△TP-P および遊離 SH 基の含量を測定し、その結果を第15表に示した。遊離 SH 基の測定は森川(49)等が行った方法に準じて Ferricyanide法によった。フェノシアソニドの標準液との比色には島津製作所製の比色計を使用し、フェノシアソニドのミリモルの濃度でその数値を示した。

第16表を図示すれば第21図が得られる。この図から明らかのように、△TP-P、SH 基、Glycogen はいずれも時間の経過と共に減少し、その減少は初期に速やかである。これから三者を比較すれば、△TP-P が最も速やかに減少し、10分で40%以上30分で完全に消失する。次にSH基で、10分で約30%、30分で約55%減少し、その後は極めて徐々に減少を続け、180分後において約70%が減少する。

Glycogen の減少は最も速やかに行われ、30分後で僅かに約25%減少するに過ぎないが、その後は SH 基に比
魚の鮮度に関する研究

して比較的速やかに減少し、60分で約40%、180分で約80%減少する。
また断頭死直後のヨイの背側筋2.0gを、蒸溜水及び0.1molのMgCl₂溶液とCaCl₂溶液でCCに浸漬し、20℃に10分間保持した後、SH基量を測定した。結果は第11表に示すようであって、△TP-Pの減少（第15表）と同様の傾向を示し、筋収縮を促進するような塩化マグネシウム溶液中では、筋肉のSH基の減少は小さく、筋収縮を促進する塩化カルシウム溶液中では減少が大きい。すなわち、以上述べた事実から、浸漬による筋収縮は、浸漬に際して、ATP等の高エネルギー複合物が分解して生するエネルギーによって起きることは確実であると推定できる。又SH基が速やかに減少するのは、Actomyosinの形成によってMyosinの逆離SH基が封鎖されるからであろうと思われる。収縮が完了し、△TP-Pが完全に消失した後におけるSH基の減少が、極めて緩慢なこともこのことを裏付けるものではあるまいか。またGlycogenの減少が比較的緩慢に進行し、筋収縮の完了後も引き続いて行われているので、解糖作用と筋収縮との間には、直接的の関係は存在しないものと考えられる。

第16表 蒸発水に浸漬した場合の筋肉中のGlycogen量、△TP-P量、逆離SH基量の時間的変化
（断頭死直後のヨイの背側筋、浸漬温度20℃）

<table>
<thead>
<tr>
<th>浸漬時間分</th>
<th>0</th>
<th>10</th>
<th>30</th>
<th>60</th>
<th>120</th>
<th>180</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glycogen</td>
<td>840</td>
<td>660</td>
<td>635</td>
<td>500</td>
<td>320</td>
<td>175</td>
</tr>
<tr>
<td>mg%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>△TP-P</td>
<td>26.6</td>
<td>15.0</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>mg%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SH基m.mol</td>
<td>0.278</td>
<td>0.198</td>
<td>0.125</td>
<td>0.105</td>
<td>--</td>
<td>-</td>
</tr>
</tbody>
</table>

第21図 断頭死直後のヨイの背側筋を蒸発水に浸漬した場合の筋肉中のGlycogen量、△TP-P量、逆離SH基量の時間的変化（温度20℃）

--- 線グラフ ---
- ○ Glycogen量
- x △TP-P量
- ● 逆離SH基量
第17表 断頭直後の魚の背側筋を0.1molの塩化カルシウム及び塩化マグネシウム液中に浸漬した場合の遊離SH基量の変化（浸漬時間 20℃, 10分）

<table>
<thead>
<tr>
<th>試料</th>
<th>0.1mol CaCl₂液</th>
<th>蒸溜水</th>
<th>0.1mol MgCl₂液</th>
</tr>
</thead>
<tbody>
<tr>
<td>-SH基 m.mol</td>
<td>0.25</td>
<td>0.09</td>
<td>0.17</td>
</tr>
</tbody>
</table>

第3節 考察

以上の実験から、灌流による筋収縮は脱水もしくは浸漬液の変化によって生する現象ではなくて、ATPase等の酵素作用により、Adenyl-polyphosphate や Creatine phosphate 等の高エネルギー磷酸化合物が分解され、その際に生するエネルギーによって、蛋白が構造的に変化を来たした結果の現象であることは明らかなるようである。しかし生歯の収縮の場合とは異って、解凍作用を進行してもその影響は極めて小さいと思われる。

前記、灌流による筋収縮は「新鮮な筋肉を蒸溜水又は他の溶液で灌流する場合に、筋肉中のMyosin系蛋白とカリとの結合状態に変化を生じ、蛋白からカリが解離すると共に、蛋白は水和され、同時にPhosphataseが活動してATP等を分解し、MyosinはfreeのSH基を失い、Actomyosinとなるために生ずる現象である」と考えられる。

勿論、この考え方は筋肉の収縮機械に関する説明として極めて不完全であり、多くの疑問や観点が存在すると思われる。しかし、灌流による筋収縮においては、死後硬直中に出現する筋肉の収縮やGeycogenの減少、Adenyl-polyphosphateの消失、free SH基の減少等を急速に進行完了させること等から考えて、死後硬直時には極めて長時間にわたって徐々に進行するこのような現象が、灌流による場合に急速にかつ短時間に完了されるのであろうことは間違いないように思われる。もしこの仮説が正しいものとすれば、灌流による筋収縮の現象は、死後硬直現象を急速かつ短時間に示すことが出来るので、灌流による筋肉の収縮率を測定して、死後硬直完了までの時間等を予測することが出来、死後硬直時の推定判定に応用することも可能であると思われる。
第4章 死後硬直期における鮮度判定法としての研究

第1章 魚肉の死後硬直現象における二三の観察

死後硬直時の肉質的観察

鮮度の魚体の示す鮮度は固い硬度ではなくて弾力性のある硬度である。内田（31）はこの弾力性のある硬度の変化を利用して、一種の鮮度度を試作し、死後硬直時の鮮度判定に応用した。しかしこの場合の硬度は魚種、魚型、鮮度度の圧し方等によって、その数値は異なるばかりでなく、断頭死の魚体あるいは切身等では測定し難い。

現在までの研究結果では、魚肉の死後硬直の進行状況を数値によって具体的に表現し、比較する短切的方法は見当らないので、結論 Sliie（53）（34）又は Cutting（53）（39）等が記述しておるように、魚体全体の硬度等から肉眼的判定するより方法がない。

死後硬直現象者の影響に因って行わること、Moran及び Smith（39）（39）Fletcher（39）（15）等の観察ばかりでなく、死後硬直の魚体を3枚に切った場合には、必ず骨付き肉は皮部の方に渇曲し、肌に切断した場合には筋肉肉が必ず脊椎骨より短くなることからも判らであること、よって次の実験を行った。すなわち断頭死の魚の背側筋肉を、筋肉収縮測定装置に挿め、8〜15℃の飼育温度の空気中に放置して、死後時間の経過に伴う筋肉の収縮状況を測定した。第11表に示すように明らかに時間の経過と共に筋肉の収縮率は変動する。この表から、死後硬直の魚の背側筋肉は8〜15℃の気温では、死後1時間位から硬度が始ままり、20時間位で最大となり、2時間位後には既に解離が始まっていることが想像される。

第11表 空気中に放置した魚の背側筋肉の死後硬直期における収縮状況（気温 8〜15℃，飼育温度）

<table>
<thead>
<tr>
<th>死後経過時間</th>
<th>0</th>
<th>2.5</th>
<th>5.0</th>
<th>10.0</th>
<th>15.0</th>
<th>20.0</th>
<th>25.0</th>
<th>30.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>気温・℃</td>
<td>8.0</td>
<td>12.0</td>
<td>12.0</td>
<td>13.0</td>
<td>13.0</td>
<td>13.0</td>
<td>14.0</td>
<td>15.0</td>
</tr>
<tr>
<td>筋肉の収縮率</td>
<td>0</td>
<td>-0.7</td>
<td>4.1</td>
<td>5.2</td>
<td>9.0</td>
<td>11.7</td>
<td>6.3</td>
<td>4.1</td>
</tr>
</tbody>
</table>

※-は伸長を示す

次に死後硬直の魚の背側筋肉を3枚に切って、切身状で測定したものを、大恒シャレに入れて室温に放置した場合の、肉眼的観察結果を示せば次の通りである。すなわち死後硬直の筋肉は渇めて固して光沢があり、肉質は硬いか固で弹性のある軟かさを呈し、肉の粘着性は少ない。しかし時間の経過と共に、筋肉は白満して不透明となり、光沢が減退し、硬くなったような感じを与えて粘着性を増して来る。この硬直筋肉表面は一様に水滴を生じたような浸漬を増し、肉質が酸性となって来る。このような傾向は魚肉のまき放置した場合と、切身状で放置した場合の両方が幾分早いか。そしてこの浸漬水を感じた時には、既に解離が始まっていると考えられる。

法式鮮度計による鮮度結果は、魚体そのままの場合においては、死後硬直の進行と共に硬度が高くなる傾向が観察され、魚肉の死後硬直の進行状況を観ることが出来るが、切身状で放置した場合には、その変化は殆ど認められず、死後硬直度を判定することが出来なかった。この原因としては、丸のままの魚体では、魚肉は死後自由に吸縮することが出来ないために弾力を生するが、切身または断頭死等の魚体では、死後硬直期における筋肉が吸縮は比較的自由に行うので、弾力性のある硬さを生じ易いためであると考えられる。すなわち法式鮮度計のような、硬度の測定方法による死後硬直期の鮮度判定法は、切身やある
いは鰭頭、その他魚体に調理を加えたもの場合には適用出来ず、死後硬直の判定は極めて困難であることがわかる。以上をまとめたものが第19表であって、第18表に示した筋肉の収縮状態と良く一致している。

<table>
<thead>
<tr>
<th>経過時間</th>
<th>0時間</th>
<th>5時間</th>
<th>10時間</th>
<th>20時間</th>
<th>24時間</th>
<th>30時間</th>
</tr>
</thead>
<tbody>
<tr>
<td>丸のまま</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>硬度</td>
<td>高</td>
<td>弾力のある感さ</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>魚体内剖検による読み</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>肉色透明</td>
<td>変化なし</td>
<td>変化なし</td>
<td>不透明白色</td>
<td>変化なし</td>
<td>傷に水分増加の感さ</td>
<td>初期腐敗の感さ</td>
</tr>
<tr>
<td>阪直</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>魚体内剖検による読み</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>切身状のもの</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>硬度</td>
<td>高</td>
<td>弾力のある感さ</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>魚体内剖検による読み</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>肉色透明</td>
<td>変化なし</td>
<td>変化なし</td>
<td>不透明白色</td>
<td>変化なし</td>
<td>傷に硬い感さ</td>
<td>初期腐敗の感さ</td>
</tr>
<tr>
<td>阪直</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>魚体内剖検による読み</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

※濃液による筋条収縮率

| | 24.9% | 10.8% | 5.5% | 0% | 0% | 0% |

※切身状にして放置した試料の収縮率を示す

また表に記載したかったが、苦悶死の魚体では、既に死後において、魚体をある程度放置した場合と同じような不透明感と粘着性があり、肉質には弾力性が無く、軟いような感覚を与える。そしてまたこのような魚体では、急速にその後の変化が進行し、しかも硬直時の硬さは小さく、明らかな死後硬直状態を認めないままに軟化するようなことがしばしば観察される。

ii 死後硬直時の化学変化特に筋肉のpH値、Glycogen量、ヘプタン残存およびSH基価について

定置釣で捕獲後、一夜水槽内で休養させたマサバ、ならばに捕獲せるコイを試料に供し、次の実験を行った。

すなわち解剖死させた各魚種の背鰭を一定温度（20°C）の空気中に放置し、一定時間毎に、濃液による筋条の収縮率、pH値、Glycogen量、ヘプタン残存およびSH基価を測定した。これらの測定はいずれもききに記録したのと全く同様の方法によって、なお採捕後一定時間（マサバは10分、コイは30分）空気中に放置し、ある程度苦悶させた後断頭死させたものを、同時に試料に供し、死亡時における苦悶の影響の有無を観察した。得られた結果は第20表の如くである。これを図示したものが第21図である。

筋肉のpH値は時間の経過と共に低下し、肉眼的死後硬直が最高と思われる時に最低を示し、サバでは9.6〜5.7の近辺、コイでは6.3〜6.4の近辺である。その後解剖上寄いpH値は上昇に転じる。また死後硬直の進行に伴い、筋肉のGlycogen量、ヘプタン残存およびSH基の含有量はいずれも次第に減少し、pH値の低減時期、すなわち死後硬直完了時期にはヘプタン残存は完全に消失する。またこの時期に達した筋肉は、浸漬による筋条を全く切れない。浸漬SH基の含有はpH値の上昇、すなわち解剖に寄い再び増加するが、この時期はpH値が上昇に転じる時期より幾分おくれるよう傾向が見られる。Glycogen量は解剖してからも更に減少し、次第に消失する。以上は死後硬直の筋肉が、浸漬水中に浸漬された場合に起こる変化を全く同様であり、ただ反応時間、すなわち変化の経過時間に長短があるだけである。

また死亡時における苦悶は死後硬直の筋肉のpH値、Glycogen量、ヘプタン残存および浸漬SH基の含有を示す。すなわち死亡時に苦悶した魚の筋肉pH値は低く、Glycogen量、ヘプタン残存およびSH基の含有量はいずれも減少する。これは死亡の際、苦悶のため多量のエネルギーが消費されたからであり、従ってこれらの値は
魚の醜度に関する研究

苦悶の醜度が薄い場合程小さいと考えられる。また死亡時に激しく苦悶した魚、すなわちこれらの値の小さい魚は、苦悶の少ない魚よりも死後変化は短時間で完了し、従って速やかに解釈に移ることが明らかに認められる。

第20表 死後48時間における筋肉（背側筋）のpH値、Glycogen残、糖P-P残、遊離SH基残および灌流による筋収縮率の時間的変化（放置温度20℃）

<table>
<thead>
<tr>
<th>魚種</th>
<th>致死条件</th>
<th>経過時間</th>
<th>0</th>
<th>3</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>28</th>
</tr>
</thead>
<tbody>
<tr>
<td>マサ</td>
<td>断頭死</td>
<td>pH値</td>
<td>7.50</td>
<td>6.10</td>
<td>5.70</td>
<td>5.7</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>5.90</td>
<td>6.20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ΔTP-P残 mg%</td>
<td>41.7</td>
<td>28.3</td>
<td>11.4</td>
<td>0</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Glycogen残mg%</td>
<td>510</td>
<td>350</td>
<td>148</td>
<td>16</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>遊離SH基残m. mol</td>
<td>0.55</td>
<td>0.50</td>
<td>0.21</td>
<td>0.12</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.12</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>収縮率%</td>
<td>15.8</td>
<td>11.20</td>
<td>3.5</td>
<td>0</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>パラ</td>
<td>腹後</td>
<td>pH値</td>
<td>5.90</td>
<td>5.55</td>
<td>5.55</td>
<td>5.60</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>5.70</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ΔTP-P残 mg%</td>
<td>22.0</td>
<td>8.3</td>
<td>0</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Glycogen残mg%</td>
<td>186</td>
<td>—</td>
<td>34</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td>断頭死</td>
<td>遊離SH基残m. mol</td>
<td>0.51</td>
<td>0.23</td>
<td>0.12</td>
<td>0.11</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.11</td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>収縮率%</td>
<td>9.4</td>
<td>2.0</td>
<td>0</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>コイ</td>
<td>断頭死</td>
<td>pH値</td>
<td>6.56</td>
<td>—</td>
<td>6.60</td>
<td>6.50</td>
<td>6.45</td>
<td>6.35</td>
<td>6.35</td>
<td>6.50</td>
<td>6.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ΔTP-P残 mg%</td>
<td>36.9</td>
<td>—</td>
<td>26.5</td>
<td>14.2</td>
<td>10.8</td>
<td>4.0</td>
<td>0</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Glycogen残mg%</td>
<td>490</td>
<td>—</td>
<td>430</td>
<td>310</td>
<td>210</td>
<td>140</td>
<td>60</td>
<td>34</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>遊離SH基残m. mol</td>
<td>0.33</td>
<td>—</td>
<td>0.28</td>
<td>0.20</td>
<td>0.14</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>収縮率%</td>
<td>24.5</td>
<td>—</td>
<td>19.2</td>
<td>11.5</td>
<td>7.5</td>
<td>2.0</td>
<td>0</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>イ</td>
<td>断頭死</td>
<td>pH値</td>
<td>6.50</td>
<td>6.45</td>
<td>6.30</td>
<td>6.30</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>6.50</td>
<td>6.70</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ΔTP-P残 mg%</td>
<td>20.8</td>
<td>—</td>
<td>12.5</td>
<td>2.6</td>
<td>0</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Glycogen残mg%</td>
<td>310</td>
<td>—</td>
<td>210</td>
<td>60</td>
<td>34</td>
<td>34</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>遊離SH基残m. mol</td>
<td>0.28</td>
<td>—</td>
<td>0.21</td>
<td>0.12</td>
<td>0.10</td>
<td>0.12</td>
<td>0.18</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>収縮率%</td>
<td>15.8</td>
<td>—</td>
<td>8.2</td>
<td>0.6</td>
<td>0</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>

上記のように、死亡時に激しく苦悶した魚ほどこれらの値が小さいことは明らかであるが、魚種が異なる場合には、外観上の苦悶の程度から、これらの値の減少の程度をそれぞれ比較することはできない。たとえばこの実験において、マサバの苦悶時間は10分、ヨイのそれは30分であり、マサバはヨイより苦悶時間がはるかに少ないとかわらず、苦悶によってマサバは約64%のGlycogenを消費するが、ヨイは36%を消費するに過ぎない。またヘ7P-P残も、同様に苦悶によってマサバの方が消費量が大きい。すなわち苦悶時間におけるエネルギーの消費状況は、魚種によって異ることは明らかである。恐らく鈍性の魚種は、定着性の魚種よりも解糖作用が旺盛で、多量のエネルギーを消費するものと考えられる。
第22-1図 死後における筋肉のPH値、Glycogen量、△7P-P量、遊離SH基量、灌流による筋収縮率の時間的変化（マサバ、断頭死。気温20℃に放置）

○ △7P-P mg. %
△ SH 収縮率
. mol. %

第22-2図 死後における筋肉のPH値等の時間的変化（マサバ、断頭後断頭死。気温20℃に放置）

△ pH 値
○ 遊離SH基量
□ 筋収縮率
× △7P-P 量
○ Glycogen 量
第22-3図 死後における筋肉pH値等の時間的変化（ヨイ，断頭死，気温20℃に放置）

△ pH 値
● 遊離SH基量
□ 筋収縮率
× △7P-P 量
○ Glycogen 量

第22-4図 死後における筋肉pH値等の時間的変化（ヨイ，断頭後断頭死，気温20℃に放置）

△ pH 値
● 遊離SH基量
□ 筋収縮率
× △7P-P 量
○ Glycogen 量
 iii 考察

魚肉は死後経過時間、筋肉片を蒸留水で調理した場合と同様に、Glycogen や Adenyl polyphosphate (AP-P) 分解 SH 基等を減じて軽減し、死後経過を短縮する。このような変化は死後経過した後に急速に進むと、後次第に緩慢に変化して完了する。そしてこの死後経過の進行速度は、魚種や致死条件によりかなり異つっている。このように死後経過の進行速度に差が生じるのは、各製造条件や致死条件、あるいは魚種間の性質の差によるもので、その原因を死後経過における筋肉の ATP 量及び Glycogen 量、及び筋肉の pH 値の変化等その筋肉の解離作用の要因によりと思われる点が多い。

すなわち筋肉の死後経過現象は、既に Erdös (3) (43) や Bate-Smith (31) (47) が述べているように、ATP の消費を伴う筋肉の収縮であり、また合成を伴わない一方の解離作用によって筋肉が調理した結果 (48) であるとすれば、死後経過の ATP 量及び Glycogen 量、およびその時の筋肉の pH 値等が、魚種の変化現象の影響を与えることは当然予想されることである。このことは著者が行った実験及びヨーマの実験結果においても、明らかに解説されている。すなわち、従来は「マサバの生きた様子」といわれた際に、マサバの死後経過が速かに解破し、極めて鮮度の低下しやすい魚種であるとはされているが、ヨーマは死後経過時間が長く、かつ鮮度の低下しにくい魚種であるというわれており、しかしヨーマの鮮度の下さしやすい魚種であっても、極めて良好な状態を長く保持することによって、その後の死後経過期間は速く死後死後経過中の長い、かつ鮮度の低下しにくい魚種でも、死後経過の状態が変化させば、マサバに葉状死後経過を経過している。このことは全く Cutting (5) の魚種の差、あるいは Ewart (31) のいう解離作用の要因によるもので、大星 (30) 等が述べている鮮度の状態によって、鮮度が速く変化し、この影響が強く現出し、その影響が魚種の鮮度、あるいは調理方法の鮮度として現れたものであろう。

このことは鮮度から魚肉に至る間の抑制、運動の状態を、イワシ、サバ、カツオのような回遊性魚種、タイヨイ、ヨーマのように白色魚肉を有する非鮮度魚種と比較すれば明らかで、一例に鮮度低下が早いかといわれる魚種ほど、この場合の鮮度、運動が極めて激しい。しかもこのように激しい鮮度、運動を行う魚種の骨格筋中には、比較的多分の Glycogen が含有され、生活時の解離作用もまた極めて盛んであることが予想されるので、死の際の骨格筋の pH 値は激しく低下する。一方鮮度に激しい解離現象を行わない鮮度魚種は、骨格筋中の Glycogen 量も少く、また解離作用も比較的遅いと考えられ、死後の筋肉 pH 値は比較的低い (39) ことが多い。そしてこのことは、既に Bate-Smith (31) (47) が鮮度の研究で述べているように、筋肉の pH 値が低下するとその時の ATP の合成分解に及ぼす影響を与え、筋肉内の ATP の無機磷酸化への分配が促進され、急速に死後経過が進むことを観察する関係があるようである。すなわち鮮度に及ぼす鮮度、運動をもとに行うと、その筋肉の pH 値は低下し、またこのような運動の為に、ATP、C-P 等が消費され、急速に鮮度が進むと、鮮度低下が早いかである。勿論魚種により、生活及び死後の筋肉内解離作用の速度が死後経過の進行速度を影響するものである。死後経過中、鮮度、運動の結果に及ぼす解離作用の影響が、極めて大きく反映することは確実である。すなわち、死後経過現象を調査を通していわゆる鮮度の良さを長期保存するためには、鮮度の調理方法を少なからず、筋肉内の ATP 量及び Glycogen 量、筋肉の pH 値等を高く保持させたまま、これを殺すことが必要である。

第 2 節 死後経過に於ける鮮度判定法としての試み

i 魚肉および致死条件を基にした場合の試み

既に述べたように、鮮度の鮮度魚種の鮮度は、鮮度時間に際する鮮度魚種を、鮮度数分間及数十分間の鮮度時間で表現するものであることは明らかである。それゆえ鮮度の鮮度魚種の解離作用を測定すれば、鮮度の鮮度魚種の鮮度、鮮度状態や鮮度状態、鮮度状態や鮮度状態、鮮度状態において鮮度状態を有す鮮度を推測することができるのみならず、鮮度における鮮度状態の鮮度機の鮮度を鮮度状態を推測することができ、また鮮度魚種を鮮度時間までの鮮度を鮮度状態することが可能であるように思われている。そこでマサバ、マダイ、クロダイ、ブリおよびヨーマを鮮度状態を鮮度状態と使用して、このようなことが鮮度であるか否かを確認するための試験を行った。
すなわち、断頭死を行ったのは同一体重の各魚体を大型シャレーに入れ、20℃の室温に放置し、一定時間毎に肉眼観察と同時に一定部位の背側筋を探り、録沸による筋肉収縮率を測定した。録沸には蒸気水を用い、録沸時間は20分、温度は20℃である。なおサバおよびコイについては苦間後断頭死亡させたものをも併せ試料に供した。測定結果を第21表に示した。

第21表 断頭および苦間死を行った魚類を20℃の空気中に放置した場合の録沸による筋収縮率の変化

<table>
<thead>
<tr>
<th>魚種</th>
<th>死後経過時間</th>
<th>0</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>15</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>コイ</td>
<td>断頭死</td>
<td>24.7</td>
<td>21.5</td>
<td>-</td>
<td>19.1</td>
<td>17.6</td>
<td>14.7</td>
<td>-</td>
<td>11.4</td>
<td>5.1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>苦間後断頭死</td>
<td>15.4</td>
<td>10.6</td>
<td>-</td>
<td>6.4</td>
<td>4.0</td>
<td>0.4</td>
<td>-</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>マサバ</td>
<td>断頭死</td>
<td>15.8</td>
<td>-</td>
<td>11.2</td>
<td>-</td>
<td>3.5</td>
<td>-</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>苦間後断頭死</td>
<td>9.4</td>
<td>-</td>
<td>2.0</td>
<td>-</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>マダイ</td>
<td>断頭死</td>
<td>16.4</td>
<td>-</td>
<td>11.2</td>
<td>-</td>
<td>3.6</td>
<td>-</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>クロダイ</td>
<td>断頭死</td>
<td>16.8</td>
<td>12.8</td>
<td>-</td>
<td>9.5</td>
<td>4.0</td>
<td>-</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ブリ（幼魚）</td>
<td>断頭死</td>
<td>9.5</td>
<td>-</td>
<td>5.0</td>
<td>-</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

この表から、筋肉収縮率およびその筋肉が完全に硬直を完了するまでに要する時間との関係を示すと、第23図のようにほぼ直線になる。マサバ、マダイ、クロダイ等に比較してコイは幾分傾斜が緩やかであるが、これはコイ肉のpH値が高く、解糖作用が遅いことに基づくためではないかと考えられる。しかしそれぞれにしても、この筋肉収縮率と完全硬直までの時間の間には極めて密接な関係があり、コイの場合はr = 0.95、サバの場合はr = 0.92を示した。収縮率（x）と完全硬直までの時間（y）との間には y = ax の関係が存在する。第23図からコイの場合はy = 0.84x、マサバ、マダイ等の場合にはy = 0.57xが導かれる。
これによって、第21表の吸収率から死後硬直完了までに要する時間を算出すると、第22表に示すようになり、実測値との差は2.9時間、平均0.7時間の範囲内である。

<table>
<thead>
<tr>
<th>魚種</th>
<th>致死条</th>
<th>収縮率 %</th>
<th>完全硬直までの時間（時間）</th>
</tr>
</thead>
<tbody>
<tr>
<td>コイ</td>
<td>断頭死</td>
<td>5.1</td>
<td>11.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.0</td>
<td>11.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.3</td>
<td>9.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.7</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.4</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.3</td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1.7</td>
<td>-0.6</td>
</tr>
</tbody>
</table>

これは限られた数種の魚について、しかも限られた条件の下で行われた実験であるから、この結果をそのまま直ちにすべての魚種に応用出来るかどうかは疑問であるが、鳥小鈴子等が全く不可能であった死後硬直完了を、ある程度の差差はあっても、この方法を応用することによって、予測することが可能となったことは確である。

放置温度を異にした場合の試み

死後硬直現象は解結作用等の酵素化学的変化によって発売されるものであり、魚が死後放置される際の環境温度に支配されるとは既に明らかにされている。この実験は主として放流時の鰓の吸収率の測定から、この事象を調べようとしたものである。

すなわち、断頭死のコイを大網シャレーに入れ、20℃、25℃及び30℃の環境に常温し、一定時間後に一定部位の背筋筋を探し、活路による歯槽吸収率を測定した。同時にヘプスタチンおよびSH系をあわせ定量した。結果は第23表に示すようであった。
第23表 貯蔵温度を異にした場合のコイ（断頭死）背側筋の灌流による収縮率及び△7P-P量，遊離SH基量の変化

<table>
<thead>
<tr>
<th>放置温度</th>
<th>死後経過時間（時）</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>15</th>
<th>20</th>
<th>24</th>
<th>36</th>
<th>48</th>
<th>72</th>
<th>84</th>
<th>96</th>
</tr>
</thead>
<tbody>
<tr>
<td>30℃</td>
<td>S H基 m.mol</td>
<td>0.3</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>0.2</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>△7P-P mg %</td>
<td>36.7</td>
<td>-</td>
<td>20.4</td>
<td>-</td>
<td>4.2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>収縮率 %</td>
<td>22.0</td>
<td>-</td>
<td>17.0</td>
<td>-</td>
<td>3.8</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20℃</td>
<td>S H基 m.mol</td>
<td></td>
</tr>
<tr>
<td></td>
<td>△7P-P mg %</td>
<td>40.0</td>
<td>-</td>
<td>33.2</td>
<td>-</td>
<td>20.0</td>
<td>-</td>
<td>10.5</td>
<td>-</td>
<td>6.3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>収縮率 %</td>
<td>24.7</td>
<td>-</td>
<td>21.5</td>
<td>-</td>
<td>19.1</td>
<td>-</td>
<td>17.6</td>
<td>-</td>
<td>14.7</td>
<td>-</td>
<td>11.4</td>
<td>-</td>
<td>5.1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0℃</td>
<td>S H基 m.mol</td>
<td>0.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>△7P-P mg %</td>
<td>40.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>24.8</td>
<td>-</td>
<td>16.8</td>
<td>-</td>
<td>12.6</td>
<td>7.0</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>収縮率 %</td>
<td>23.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>20.5</td>
<td>-</td>
<td>16.2</td>
<td>11.4</td>
<td>6.6</td>
</tr>
</tbody>
</table>

すなわち、いずれの温度の場合においても、筋肉収縮率が零となる場合には△7P-P量も零となり、SH基数も最低を示した。この時が肉眼的観察結果による死後硬度の最高期に一致した。今筋肉収縮率と死後時間との関係を第23表から図示すると第24図が得られ、時間の経過と共に筋肉収縮率は始んと著しく減少することがわかる。

第24図 放置温度を異にした場合のコイ背側筋の収縮率と完全硬化までの時間との関係
- - - 放置温度 30℃ - - - 放置温度 20℃
- × - 放置温度 0℃
今この図から速度係数 K を求めると

<table>
<thead>
<tr>
<th>湿度 (%)</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>50%</td>
<td>2.5</td>
</tr>
<tr>
<td>20%</td>
<td>1.21</td>
</tr>
<tr>
<td>0%</td>
<td>0.95</td>
</tr>
</tbody>
</table>

となり，温度係数 $Q_s = 2.07$である。

III 考察

瘤漬による筋肉の収縮現象は，長時間に及ぶに進行する死後直直現象を，急速に進行完了させるものであり，死後直直現象と瘤漬による筋収縮現象との間には，密接な関係があがることが明らかにされ，瘤漬による筋収縮から，死後直直の進行状態をもたらし，さらに死後直直時間の推定することができることが確かめられた。さらに，死後時間および熟死温度が明らかの場合には，筋収縮率の測定を要して，魚の生前の状態をある程度知ることができることが確かめられた。たとえばウヨの場合，瘤漬による筋収縮率が10%であるとすれば，死後直直完了までの時間は $t = 0.84y$の式から，20℃では約8.4時間，10℃では温度係数2.1を乗じて約17.6時間であると予測することが出来る。また，この場合ウヨが，温度20℃で死後1時間経過のものであるとすれば，死後直直完了までの全時間と5+8.4=13.4時間であり，死後直直後の筋肉収縮率は上記から約16%となり（通常のもの筋肉の収縮率は21～30%でありながら），この場合の相対蓄積させた焼後したもの，あるいは生活の直後の状態の悪かったものということが想像出来る。

従来，このような魚体の致死条件の判定，あるいは死後直直完了までの時間の予想等は，長年の経験によりらばならず，また数値的にこれを得ることは出来なかった。しかし著者の研究によって，極めて直後に，切片状の筋肉あるいは調理された魚体の場合でも，容易にこれを数値的に予測することが可能となった。しかしこの方法では，死後直直完了後の酸度を測定することは出来ない欠点がある。もし直直完了後の，解体時から初期解体までの酸度測定を行う場合には，適切の SH 基の測定が最も効果的であるように思われる。この数値は著者の実験結果からも明らかのように，死後直直の進行と共に減少し，直直完了後に最もなり，解体により再び増加する。従ってこの変化からも酸度測定を行うことが出来るように思われる。
第5章 致死条件および死後の取扱いか死後凍直におよぼす影響

第1節 致死条件の死後凍直におよぼす影響

魚の殺し方で魚肉の死後凍直状態に極めて著しい影響をおよぼし、従って魚肉の鮮度保持は魚を殺す方法によって支配されるといわれている。たとえば、羽野(20) (153) などがソウダカブトについて研究した結果によれば、鮮度保持上延長剤が最も良好で、次に断頭、窒息（自然死）の各致死条件の類である。しかし、このような影響は既に前観で述べた知く、単なる致死条件の差異によるものではなく、死の直前における魚の激しい運動、あるいは窒息による筋肉の激しい収縮、位置変によるものであると思われる。このことは次の実験から明らかに示される。

すなわち、延長剤まで激しい運動を行い、凍直後は逆に自然死亡するような場合には、殺し方の差異による影響は極めて少ない。著者が佐渡水産の延長剤で凍直されたソウダカブトについて、肉眼的観察を行った結果を第24表に示した。すなわち、延長剤と自然死亡との間には、殆どその差異を見ることが出来ない。

<table>
<thead>
<tr>
<th>死後時間</th>
<th>0 時間</th>
<th>30 分</th>
<th>2 時間</th>
<th>6 時間</th>
<th>12 時間</th>
<th>16 時間</th>
</tr>
</thead>
<tbody>
<tr>
<td>自然死亡</td>
<td>肉色透明</td>
<td>硬直開始</td>
<td>肉色変化なし</td>
<td>硬直進行</td>
<td>硬直最高</td>
<td>解体の傾向あり</td>
</tr>
<tr>
<td>延長剤</td>
<td>肉色透明</td>
<td>硬直開始</td>
<td>肉色変化なし</td>
<td>硬直進行</td>
<td>硬直最高</td>
<td>自然死と差異なし</td>
</tr>
</tbody>
</table>

しかし、鰭片サバの場合においては、凍直後直ちに延長剤を行ったものとそのまま放置して自然死亡させたものとの間には、第25表に示すように明らかに相違が認められる。

すなわち、凍直に長時間を要しない（1種釣流法）の場合は勿論のこと、延長剤流法等においても、凍直時激しい運動を行わず、しかも凍直後短時間に比較的長時間生存しているタイ、ヒラメのような回生性魚鰭の場合には、凍直後直ちに延長剤することが鮮度保持の上から極めて効果的である。しかし、底度、刺身等は延長剤の各流法のように、凍直時魚体が極めて激しい運動を挙げ、凍直の鮮度に死亡してみるか、あるいは凍直直後も自然死亡するような流法や、あるいは延長剤等においても凍直の激しい運動を行って凍直後直ちに自然死亡するサバ、サバのような回生性魚鰭の場合には、凍直後の致死条件の塩定あり大きく影響を与えるようにと思われる。

延長剤は、一般に魚鰭の生物的なミネラルに相当する方法であるが、羽野(20) (153) にその効果は断頭死よるかに効果的であるとすると、著者の行った延長剤直ちに断頭した場合には、断頭死の場合との間にその差を見ることは出来なかった。延長剤は魚鰭の運動中親興起に相当するので、この部分を完全に破壊する時には、魚体は激かに激しい運動をして、そのまま延長運動を行わずに停止している。しかし、未だその心臓は運動を続けるし、血流は停止していないから、断頭死の場合よりも呼吸死を行われたが長時間生存しているともいえる。著者の実験によれば、第26表に示すようにコイの場合20℃内外の気温では、なお約3時間以上心臓が活動しているのが見られた。
第25表 ヘネ釣りで漁獲したサメの死後における腸胃結果

<table>
<thead>
<tr>
<th>致死条件</th>
<th>死後処理</th>
<th>魚体温度</th>
<th>死後経過時間</th>
<th>肉 色</th>
<th>魚 色</th>
<th>醃 色</th>
<th>驚 頭</th>
<th>潮流による△7P-P量</th>
<th>Glycogen量</th>
</tr>
</thead>
<tbody>
<tr>
<td>自然放置</td>
<td>空気中に</td>
<td>14.0℃</td>
<td>14時間</td>
<td>色</td>
<td>焼</td>
<td>鮮</td>
<td>青</td>
<td>0%</td>
<td>mg%</td>
</tr>
<tr>
<td>焼き鰹漬</td>
<td>(直腸死)</td>
<td>18.0℃</td>
<td>9時間</td>
<td>鮮</td>
<td>香</td>
<td>香</td>
<td>香</td>
<td>0%</td>
<td>12.0%</td>
</tr>
<tr>
<td>自然放置</td>
<td>(直腸死)</td>
<td>6.0℃</td>
<td>14時間</td>
<td>鮮</td>
<td>香</td>
<td>香</td>
<td>香</td>
<td>0%</td>
<td>12.0%</td>
</tr>
<tr>
<td>延暖刺</td>
<td>(直腸死)</td>
<td>7.0℃</td>
<td>14時間</td>
<td>鮮</td>
<td>香</td>
<td>香</td>
<td>香</td>
<td>0%</td>
<td>12.0%</td>
</tr>
</tbody>
</table>

備考：貯水使用のものは最終の3時間程水浸漬の形となる。試料は7月24日24:00時~24:45分の間に漁獲したものである。

第26表 延暖刺と断熱処理のコイの死後変化における影響（温度20℃）

<table>
<thead>
<tr>
<th>致死条件</th>
<th>死後処理</th>
<th>時間</th>
<th>収縮率</th>
<th>7P-P量</th>
<th>収縮率</th>
<th>7P-P量</th>
<th>収縮率</th>
<th>7P-P量</th>
</tr>
</thead>
<tbody>
<tr>
<td>延暖刺</td>
<td>3時間</td>
<td>20分</td>
<td>22.0</td>
<td>34.3</td>
<td>7.0</td>
<td>9.4</td>
<td>2.0</td>
<td>4.2</td>
</tr>
<tr>
<td>延暖刺後断熱刺</td>
<td>3時間</td>
<td>20分</td>
<td>18.9</td>
<td>28.5</td>
<td>3.5</td>
<td>6.7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>断熱刺</td>
<td>2時間</td>
<td>16分</td>
<td>19.3</td>
<td>29.7</td>
<td>4.2</td>
<td>6.7</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

※心臓は浸漬しているが頭部のために血液の流れは行われておらない。

すなわち、著者の実験で延暖刺と断熱刺の間の違いが見られなかったことは、延暖刺後直ちに断熱を行った為である。実際の場合においては断熱死に比較して延暖刺は血液の循環が行われており、その間は死後発電行なう時の延長が延長であるわけである。故に注目された点は、死後の鮮度が行られる生産においても、この場合には延暖刺の場合と異って、鮮度およびさびの為の鮮度が良い、果実や野菜を保存するのに、充分な反応作用を伴わないので、筋肉内のATP、Glycogen等は一括に急速に分解消費され、死亡時の筋肉のATP量やpH値等は著しく低下し、そのまま急速に死後発電に移行完了するものであろう。

さらに延暖刺は断熱刺の場合と比較して魚体に大きな損傷を与えず、死後の魚体の鮮度を極めて保持する効果があることの理由は、魚体の体色をつかさどる色素神経の中樋が延暖の直後に存在するので、延暖刺
魚の鰾度に関する研究

第 2 節 死後吸血行動の影響に関する研究

1 貯蔵温度の影響について

魚は凍結温度以下の低温度で貯蔵される場合が極めて多い。凍結後と貯蔵温度との関係は、特に凍結温度以上の場合については、既に述べた前輩の実験から明らかであるが、凍結温度以下の場合についてはまだ完全に明らかにされていない。これに関連する三笠らの研究は次のようにある。

極めて新鮮な死後硬度前の鰾肉を凍結し解凍する場合には、いわゆる解凍硬度の現象を起して、多くがドリップを流出し、筋肉は収縮し、ATP及びSH基の減少等が見られるが、死後硬度前の鰾肉を凍結した場合には、このような現象が見られないことを天野（81）（82）等は報告し、また凍結によって吸血作用が促進され、乳酸の生成傾が増加することを、カエル筋について竹下（85）（86）等が報告している。また魚肉蛋白は、2.0℃附近で貯蔵される場合には、0℃の場合よりも低い変性を受けることが報告（87）（88）、Reay（89）（90）等によって報告されている。天野は死後硬度前に凍結された鰾肉を解凍させた場合に生ずる解凍硬度の現象は、凍結によって中断された死後硬度現象が、解凍によって再び進行し、死後硬度現象が再現されるのではないかと考えた。また竹下は凍結による解凍作用の促進を、部分的凍結によって、未凍結の組織液が濃厚となり、筋肉中の無機イオンが過剰となって、解凍作用が促進されるのではなくかと考え、凍結は未凍結の組織液中の中塩濃度が濃厚となり、その為に蛋白の変性が行われないのであろかと述べている。

しかし、著者はさきに述べた実験結果から次のように考えた。すなわち凍結による吸血作用の促進は、筋肉が凍結される場合には未凍結の組織液中の無機イオンが過剰となるが、このような状態になった場合、先きに第3章第2節の節で述べた0.1mol以上の濃厚塩類溶液中に筋肉が浸漬されたので同様な結果となり、未凍結の筋肉は濃厚塩類溶液による筋収縮の現象を生じ、筋肉は収縮して、ATP、Glycogen等は分解し、解凍作用が急速に進行するのである。また解凍の際に見られる解凍硬度の現象は、筋肉内の水結晶が解離して、体組織液に希釈され、0.1mol濃度以下の希薄塩類溶液中に筋肉が浸漬された場合と同様の機理によって生するのではなかったか。そこでこのことを確かめるために、頭部魚の背側筋を試料に用い、死後直後そのままの筋肉、一旦水に浸漬した後の筋肉、および死後時間が完了後の筋肉について、次のような実験を行った。

すなわち、厚さ1.5mm、巾5.0mm、長さ20.0mm内外の大きさの筋肉片を、筋肉取扱量測定装置に固定し、これを0℃、±0.5℃の室温に3時間放置して、自然に凍結させた後、18℃の室温に移し、空気中で融解させ、その間における筋肉の収縮かの変動を調べ、その結果を第25図に示した。また死後直後そのままの筋肉、および一旦水に浸漬した筋肉について、凍結後および融解後におけるATP-Pの比率
Glycogen 量を測定したので、その結果を第27表に掲げた。

第27表 冷蔵および解凍による筋肉中のAMP-P量および Glycogen 量の変化

<table>
<thead>
<tr>
<th>試験</th>
<th>Adenyl-poly-Phosphate (AMP-P) 量</th>
<th>Glycogen 量</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>mg% 36.7</td>
<td>% 100</td>
</tr>
<tr>
<td>(2)</td>
<td>12.5</td>
<td>24.3</td>
</tr>
<tr>
<td>冷蔵後</td>
<td>試験 (1)</td>
<td>19.2</td>
</tr>
<tr>
<td></td>
<td>試験 (2)</td>
<td>9.4</td>
</tr>
<tr>
<td>融解後</td>
<td>試験 (1)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>試験 (2)</td>
<td>4.2</td>
</tr>
</tbody>
</table>

試料(1)…凍結死直後の目の後側部、試料(2)…試料(1)と同じものを蒸留水中に10分間浸漬したもの、凍結…-10℃に3時間放置、融解…15℃で1時間放置

すなわち死後そのままの筋肉は、明らかに解凍によってある程度収縮し、融解によってさらに著しく収縮するが、一旦水に浸漬して『洗い』の現象を生じさせた筋肉、あるいは解凍後の筋肉は、凍結によっても収縮を現さない。また第27表から明らかのように、死後直後のそのままの筋肉では、融解および融者が AMP-P は多量に減少するが、一旦水に浸漬した筋肉では融解および融解によって減少する量は少々、筋肉中に比較的多量に残存する。また死後直後そのままの筋肉では、融解の際に減少する ATP 量と融解の際に減少する AMP-P 量の差は大きな差はないが、融解の際には融解の際の約2倍収縮する。

融解の際には筋肉の収縮が行われると共に、一方では水を基になるガスも水を含む。このガスの差が、おわりに見かけの収縮が融解の際の筋肉収縮を示す。同様に、融解の際には水を基になる筋肉は増加するので、融解後にも収縮のほかに水を基になる筋肉が加算され、これに融解後の収縮を示すのであって、凍結の収縮は、凍結の筋肉と融解の筋肉もまた大きな差はないのではないか。

またこの実験から明らかになることは、解凍作用が強めて短時間の間、単に融解および融解という処置を施しただけで生じるもの、改善後の筋肉は、一旦融解したものを元の状態に変えることは温度でなく、融解後の凍結で可能である。融解温度以上では温度が高いと融解凍結は速かに完了するものであるが、いずれにしても完了までには相当時間を要することは前章で述べた通りである。しかし、この現象の起こる原因についてはまだ明らかにされていない。

II 水浸けの影響

水中に浸漬貯蔵された魚は、空気に触れることで変化を生じ、あるいは腐敗が加速する。
た魚は同温度で溶液されたものよりも多く増殖が多く、かつ早く死散することは日常良く経験するところである。また、著者が先に記した第3表に示すも、ある程度この事実はもうかがわれる。すなわち、死後空気中に放置された魚体、および水生牧生紙を被覆後水中に貯蔵された魚体では、殺しの影響が明らかに認められる。なお、水に接触されて酵素または水の浸潤による魚体、魚肉、魚の浸透されれば、殺しの影響が殆ど見られない。また同温度で水浸漬された魚体においても、かえって鮮度は低下することが見られる。

従来、この理由については、このような条件下における確認醸酵の葉を養の難易によるためであると考えられている。また、肥満や皮膚性あるいは肉食等を対象にしている場合、これらの肉を水で洗浄したり、あるいは水を塩だたせることと、塩類の間では著しく繁殖されておる。この繁殖する理由は単に塩だけに限られていると考える。著者は既に述べた飼養による繁殖後の研究結果から、筋肉の水浸漬されれば、直接にその部分に酵素が移動を促進して、空気中では数時間以内に数十時間を要して徐々に進行する事実があり、この現象は、すなわち繁殖による筋肉の酵素を生じ、雰囲気中では数時間以内に数日に及ぶので、従って鮮度低下を早くするのであると考えた。

そこで、この事実を確認するために以下の実験を行った。まず魚を水中に浸漬した場合、果して外周の水分が皮膚を通過して内臓肉にまで浸透するか否かを確かめた。

延焼剤のコイを蒸留水および0.1molのNaCl溶液中(20°C)に浸漬し、時間の経過に伴う体重の増加を測定した。結果は第28表に示すのであった。

<table>
<thead>
<tr>
<th>No.</th>
<th>浸漬時間(時)</th>
<th>0.5</th>
<th>1.0</th>
<th>1.5</th>
<th>2.0</th>
<th>4.0</th>
<th>6.0</th>
<th>8.0</th>
<th>12.0</th>
<th>23.0</th>
<th>29.0</th>
<th>45.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20.13</td>
<td>1.2</td>
<td>2.1</td>
<td>2.3</td>
<td>3.4</td>
<td>4.0</td>
<td>5.0</td>
<td>5.4</td>
<td>6.5</td>
<td>7.5</td>
<td>7.9</td>
<td>8.6</td>
</tr>
<tr>
<td>2</td>
<td>16.50</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>2.8</td>
<td>3.4</td>
<td>4.1</td>
<td>4.1</td>
<td>5.5</td>
<td>6.3</td>
<td>7.0</td>
<td>7.3</td>
</tr>
<tr>
<td>3</td>
<td>13.00</td>
<td>0.3</td>
<td>2.4</td>
<td>2.4</td>
<td>3.5</td>
<td>3.5</td>
<td>4.1</td>
<td>5.4</td>
<td>6.0</td>
<td>6.5</td>
<td>5.3</td>
<td>4.9</td>
</tr>
<tr>
<td>4</td>
<td>12.25</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>2.6</td>
<td>3.3</td>
<td>4.4</td>
<td>4.5</td>
<td>6.3</td>
<td>7.2</td>
<td>7.9</td>
<td>7.9</td>
</tr>
<tr>
<td>5</td>
<td>11.00</td>
<td>1.2</td>
<td>2.0</td>
<td>2.6</td>
<td>2.5</td>
<td>3.9</td>
<td>4.9</td>
<td>5.7</td>
<td>7.2</td>
<td>8.1</td>
<td>6.6</td>
<td>7.6</td>
</tr>
<tr>
<td>平均</td>
<td>14.76</td>
<td>0.9</td>
<td>2.2</td>
<td>2.4</td>
<td>2.9</td>
<td>3.6</td>
<td>4.5</td>
<td>5.0</td>
<td>6.3</td>
<td>7.3</td>
<td>6.5</td>
<td>7.2</td>
</tr>
</tbody>
</table>

第28表から明らかのように、体重は増加するが、その増加は最初の2時間間の間に急激に、その後は殆ど同値の進行とともに徐々に増加して、最大重量増加は最高6〜8%に達する。また0.1mol濃度の蒸留水に浸漬した場合には、重量の増加はよりかに小さく、硬度の程度も比較的小さい。勿論この場合の重量増加は、筋肉中に水分重量浸透した為の増加ばかりでなく、内臓等への水分の浸透もある。

つまり、延焼剤のコイを蒸留水および水中に放置して24°Cに保ち、一定時間毎に筋肉の水分重量、PH値、△TP-P量、SH基質、塩漬による筋肉の収縮率、揮発性塩基性成分を測定した。揮発性塩基性成分の定在はConwayの微量滴定法によって、結果は第28表に示すようにあった。

死焼剤の塩漬による筋肉の収縮率、△TP-P量、PH値、SH基質の変化等から、水中放置の場合には1時間後、空気中放置の場合には3時間後完了し、両者の間には約2時間以上の差のあることが認められる。
死後硬直完了後のpH値, SH基濃度および堿発性基錆素基等の変化は, 予想に反して死後硬直完了の直後の影響が見られなかった。しかし, 30時間処理した魚から水浸漬の方が速く硬直し, 肉鮮やかな肉質の変化が見られた。また水中に放置した魚の場合は腐敗開始の順に体重も減少しているにもかかわらず, 肉濃度の水分含増加している。これは腐敗によって魚肉成分が溶出したためと思われる。

第29表 亜鉛保持におよぼす水浸漬の影響（試料 延長解を施した体重70g内のカイ）

水浸漬 湿度20℃の水遊水中に魚体を浸漬し, 一定時間毎に一尾ずつ取り出して分析に供す。

<table>
<thead>
<tr>
<th>項目</th>
<th>0</th>
<th>3</th>
<th>6</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>45</th>
<th>72</th>
</tr>
</thead>
<tbody>
<tr>
<td>魚 体 亜鉛</td>
<td>41</td>
<td>42</td>
<td>42</td>
<td>60</td>
<td>60</td>
<td>55</td>
<td>43</td>
<td>23</td>
</tr>
<tr>
<td>水浸漬時間の変化%</td>
<td>100.0</td>
<td>102.0</td>
<td>104.0</td>
<td>103.5</td>
<td>104.4</td>
<td>102.7</td>
<td>98.5</td>
<td>89.5</td>
</tr>
<tr>
<td>亜鉛</td>
<td>%</td>
<td>79.58</td>
<td>81.44</td>
<td>81.36</td>
<td>80.96</td>
<td>80.56</td>
<td>81.25</td>
<td>84.00</td>
</tr>
<tr>
<td>洞流による亜鉛%</td>
<td>25.0</td>
<td>22.0</td>
<td>14.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>pH値</td>
<td>6.09</td>
<td>6.55</td>
<td>6.55</td>
<td>6.50</td>
<td>6.60</td>
<td>6.67</td>
<td>6.7</td>
<td>7.05</td>
</tr>
<tr>
<td>SH基 ㎎/㎎</td>
<td>6.88</td>
<td>9.27</td>
<td>9.60</td>
<td>8.61</td>
<td>7.25</td>
<td>7.25</td>
<td>30.73</td>
<td>103.00</td>
</tr>
</tbody>
</table>

肉 腎 鰓 鰭

硬直開始の傾向見

硬直完了
軟化、軟化、軟化、軟化、軟化

魚 体 亜鉛	42	45	52	60	55	57	40
湿度20℃の水遊水	27.0	22.4	11.4	7.0	0	0	0
pH値	7.10	7.05	6.81	6.78	6.50	6.60	6.75
SH基 ㎎/㎎	34.9	20.0	12.8	2.0	0	0	0
洞流による亜鉛%	8.15	6.87	3.94	9.26	10.57	22.28	75.73

なおこの実験では, 肉鮮な魚体の結果から内訳解析の影響が強く見られたので, 肉質のことを一つの実験を行った。すなわち断頭死亡の原因であるか否かに注意を払ったところ, および蒸溜水7℃と共に入れて恒温槽に25℃の恒温槽に放置し, 一定時間毎に, それぞれMgP-酸, SH基, 洞流性基錆素基を測定した。結果は第20表, 第21表に示す通りであった。

すなわち, その結果は全魚体のまま実験した場合と全く同様の傾向を示した。死後硬直の完了は空気中で13時間, 水中では1時間以内（恐らく1時間前位）であるが, 腐敗開始の時期は空気中でも, 水中でも, 同じように2時間経過した附近である。しかし, 腐敗開始後のSH基および洞流性基錆素の増加は水害の場合やはるかに著しい。凍水（7℃）がインガレットで0℃（無凍, 冷蔵）で実験した場合は無凍の方が速く腐敗していたが, この場合のアミノ酸類基錆基は鰻魚の場合よりも多いので, 恐らく腐敗した水で野草や魚類生産物が洗浄されるものであろう。
第30表 鮮度におよぼす水浸漬の影響（試料：断頭死を行ったヨイの背側筋、25℃に放置）
水浸漬……一定量の蒸留水中に一定量の背側筋を浸漬し、一定時間おきに全量を分析した。
空気中……一定量の背側筋を壷中に密詰し、一定時間毎に分析する。

<table>
<thead>
<tr>
<th>死後経過時間（時間）</th>
<th>0</th>
<th>0.5</th>
<th>2.0</th>
<th>5.0</th>
<th>9.0</th>
<th>13.0</th>
<th>18.0</th>
<th>23.0</th>
<th>30.0</th>
<th>38.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>空気</td>
<td>Δ7P-P量</td>
<td>mg%</td>
<td></td>
<td></td>
<td>10.8</td>
<td>3.4</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S-H基</td>
<td>m.mol</td>
<td>0.300</td>
<td>0.295</td>
<td>0.263</td>
<td>0.134</td>
<td>0.128</td>
<td>0.084</td>
<td>0.081</td>
<td>0.165</td>
</tr>
<tr>
<td>空気</td>
<td>排泄性塩基塩素量</td>
<td>mg%</td>
<td>8.20</td>
<td>—</td>
<td>11.13</td>
<td>—</td>
<td>—</td>
<td>9.77</td>
<td>—</td>
<td>25.34</td>
</tr>
<tr>
<td>水</td>
<td>Δ7P-P量</td>
<td>mg%</td>
<td>35.0</td>
<td>5.1</td>
<td>—</td>
<td>0.0</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>水</td>
<td>S-H基</td>
<td>m.mol</td>
<td>0.300</td>
<td>0.145</td>
<td>—</td>
<td>0.102</td>
<td>0.079</td>
<td>0.079</td>
<td>0.265</td>
<td>0.400</td>
</tr>
<tr>
<td>水</td>
<td>排泄性塩基塩素量</td>
<td>mg%</td>
<td>8.20</td>
<td>—</td>
<td>—</td>
<td>6.02</td>
<td>8.33</td>
<td>—</td>
<td>10.62</td>
<td>—</td>
</tr>
</tbody>
</table>

第26図 ヨイ筋肉の鮮度に及ぼす水浸漬の影響（25℃）

すなわち、以上の2つの実験例から明らかかなことは、水浸漬によって死後硬直は速やかに進行完了するが、その後の変化は水浸漬によってかえって促進されることであり、死後硬直完了から腐敗開始までの時間は、水浸漬の場合がむしろ長い。このことは放置温度が比較的高かったためかとも思われるが、腐敗細菌の繁殖に対しても、死後硬直の遅延ということは著しい影響を与えないことを示すもので、このことはまた天然の行った、致死条件を異にしたソウダガツオの実験例（9）でも明らかに観察される。
第6章 摘要および結論

(1) 魚肉取縮を測定装置を考案し、灌流による魚肉収縮現象（洗いの現象）について、魚の弾性特死後硬直現象ならびにその判定法と関連して広範な研究を詳細に行った。

(2) 灌流による筋肉収縮率は魚種によって異なるものならず、また同一魚種でも部位によって異なる。pH値が高くなると、Glycogen 量が少なく、かつATP等の Polyphosphate の含有量が多い筋肉はその収縮率は大きい。これは魚の生活習慣における消化酵素と密接な関係がある。一般に、鰹魚後に激しく激しい運動をしてきた部位の筋肉ほどそのpH値は高く、Polyphosphate 量は多く、筋収縮率は大きい。また、体型が游泳に不適当で、高にはあまり活発な運動を行わないが、時に激しい運動を行う完食食性魚類では、筋収縮率は大きく、体重が増加し、特に軟骨魚の魚類は鰹魚後の鰹と比較すると体の大きさが増加し、筋収縮率は大きい。前者は体形が游泳に不適当であるから、鰹魚、鰹魚等の場合には短時間ではあるが急速な極端に激しい運動を行う必要があるが、後者は体形が游泳に適し、鰹魚の運動でも急速な游泳が可能であり、従ってそれほど激しい運動を行う必要がないからであろう。

(3) 灌流による筋収縮は洗い液に基づく運動面の変化、または脱水作用等のために生じる現象ではない。

(4) 灌流による筋収縮現象は灌流液によって、ミオシン系蛋白とカルシウムとの結合状態が変化し、蛋白がカルシウムが解離するとともに蛋白は水和し、更にATP-ase等の酵素の作用によって、ATP等の Polyphosphate が分解され、その際生じたエネルギーによって、筋肉が構造的変化したものであると推定できる。

(5) 魚の死後における筋肉の pH値、Glycogen 貯、Polyphosphate（△TP-P）濃度及び遊離 SH 基底は、いずれも死後まもなく急速に、後浸漬に鰹魚に低下又は減少し、△TP-P値が高、pH値、free SH 基底が時々最大値に達した時の死後明快度は定める。解解と共にpH値及び遊離SH基底は徐々に増加する。

(6) 死後明快度完了に至るまでの各時期における灌流による筋収縮率は、死後明快度が完了に近づいたものほど、すなわち筋肉の pH値、Glycogen 貯、△TP-P 濃、遊離SH基底が低下又は減少したほど小さく、△TP-P値が全く消失した筋肉では筋収縮は起こらない。

(7) 灌流による筋収縮現象は死後明快度完了後の魚肉では起こらない。

(8) 灌流による筋収縮現象によって、数時間ないし数十分間を要して完了する死後明快度現象が、僅か数分ないし10数分の短時間で発生できる。

(9) 灌流による筋収縮率を測定することによって、魚の弾性特死後明快度完了までの間のいわゆる「生きのよさ」の程度を判定し得る。すなわち、この方法により、死後明快度完了までの時間の予測および生活の栄養状態、または死後明快度の程度等を推定し得る。

(10) 死後明快度に及ぼす環境温度の影響は、0℃～30℃の範囲ではQ10＝2.1であり、温度10℃低下に硬直完了期は約2.1倍延長する。

(11) 灌流および脱水の操作によって、死後明快度前の筋肉に、灌流による筋収縮の現象を生じさせる。すなわち筋肉の Polyphosphate（△TP-P）量、Glycogen 貯は減少し、筋肉は収縮する。

 魚肉を水に浸漬すると水を徐々に皮膜を通して筋肉内に浸透し、灌流による筋収縮現象が生じ、急速に死後明快度は完了する。

(12) 死後明快度によって、死後明快度時の筋肉の Polyphosphate 量（△TP-P）、Glycogen 貯、pH 値等は急速に減少し、従って死後明快度後の魚は、灌流による筋収縮率は小さく、また死後明快度完了までの時間は短い。灌流法を用いる場合には魚種により死後明快度に及ぼす影響があるといわれているが、これは灌流および死後死後明快度の筋肉内の解離作用の結果が強く反映するためであろう。
鰤の鮮度に関する研究

（10）塩漬け、断頭、苦労の各致死条件の順で死後硬直が早く進行する。これは致死条件の影響というよりは、死亡時における苦労運動の蓄積された結果によるものと考えられる。従って流替方法、魚種等を考慮しなければ、塩漬けの効果は無視されないであろう。また水洗、冷蔵等の手段を講ずずかに死後硬直が完了し、いわゆる魚体の“生きの良さ”が消失するから、このような場合には致死条件の影響は殆どと見られない。

（11）鰤の“生きの良さ”をできるだけ長時間保持する方法は、塩漬けに魚の苦労運動を最少に止め、塩漬け又は断頭の手段によって殺し、凍結しない低温度で冷蔵保管することである。長時間塩漬状態のもとで生存させた後殺したもの、あるいは死後水中に浸漬させたもの、または塩漬等によって処理したもの、もしくは凍結したもの等は、ある場合には腐敗の防止延長は出来ても、死後硬直期間の延長、すなわち筋肉の生きの良さを保つことは困難である。

参考文献

1. 田内隆三郎, 吉田観部, 和田同英: 水産講習所試験報告, 26, 79, 1934
2. 山村 弥六郎: 水産講習所試験報告, 27, 45, 1932
5. 大竹茂夫, 山本常治: 日本海區水産研究所研究年報, 1号, 183-188, 1954
10. 田村 建治: 日本水産学会誌, 1, 4, 168-170, 1932
12. 山村 弥六郎: 日本水産学会誌, 10, 2, 85-86, 1941
13. 山崎紀, 北野栄一: 日本水産学会誌, 13, 6, 232-236, 1945
16. 河野 正雄: 日本農芸化学誌, 9, 730, 1925
17. 木村金太郎, 北村善: Proceeding of the Pan-Pacific Science Congress, 5, 3709, 1934
18. 谷 川 英一: 水産製造技术, 5, 5, 267-296, 1935
19. 山田紀, 新田善一郎: 日本水産学会誌, 14, 1, 23-26, 41-47, 1945
20. 天野澄之, 尾崎方信, 河田善: 日本水産学会誌, 19, 4, 487-498, 1953
24. 小野寺太郎, 岩垣宏一, 山西重: 日本水産学会誌, 15, 499-504, 551-553, 554-556, 1950
27. 佐々木次郎, 佐貫英夫: 日本水産学会誌, 15, 407-411, 1949
28. 天野 昇之 外: 日本水産学会年會講演, 1954
29. O. V. EÜRTH: Ergebniss physiol. u Pharmakol., 17, 363, 1919
34) 藤村正, 古沢信雄: 日本水産学会誌, 19, 4, 499-504, 1953
35) A. SZENT GYÖRGY: Chemistry of Muscular contraction, 2nd ed., 1951
36) W. WALKIEWIEZ: Z. E'ele, Milchhyg., 46, 171-174, 1936
37) 天野啓之: 水産食品衛生化学の研究, 東京水産研究所研究報告, 1号, 1950
38) 河端俊治: 日本水産学会誌, 18, 3, 124-132, 1952
39) 山本正, 市川正典: 日本水産学会誌, 19, 6, 761-766, 1953
40) 小村金太郎: 水産製造全書, 上巻, 10-11, 1933
41) 今井保彦: 国民衛生, 12, 2, 181, 1955
42) 田川政: 食品衛生, 1, 105, 1949
43) 河端俊治: 日本水産学会誌, 19, 7, 813-818, 1953
44) W. M. FLETCHER: J. Physiol., 28, 474, 1902
47) E. C. BATE-SMITH: Advance Food Res., 1, 1-38, 1948
48) 名取武: “食生理学”, 30, 198, 1951
49) VERZÁK: F. HAWROWITZ “Progress in Biochemistry” 324-335, 1950
50) 田村維次, 渡辺洋一: 科学, 23, 557-573, 1953
53) K. SCHLEIB: Kalte-Ind., 31, 115-119, 1934
55) 山村光一郎, 塚野健: 日本水産学会誌, 6, 4, 185-186, 1937
56) 長沢栄三, 野口栄: 水産食品研究, 第2号, 1, 28-31, 1953
57) 安藤貞, 佐久間令信: 藤野研究: 日本水産学会誌, 8, 1, 23, 1939
58) L. HERRMANN: Hermanns Handbuch der Physiologie, Bd. L, 1, 102, 1879
59) LOEB: Handbuch der Biochemie, Bd. L, 1, 102, 1879
60) 鈴野英也: 京都大学紀要, 13, 1916
61) 岩村長: 京都大学紀要, 17, 821-840, 1920
62) L. HELDEMBERG: Physiol. Zool., 13, 58, 1940
63) A. BETHE & P. HAPPEL: Pfüger's Arch. f. d. gesamt. Physiol., 201, 157, 1923
64) 池田傳雄: “魚類生態学の実際”, 1947
65) 加藤尚一郎: 魚類生態学, 1, 2, 59-100, 1950
66) 森田正夫: “光電色計に依る臨床化学検定”, 1954
67) 鈴木直道: 動物学雑誌, 49, 7, 251-254, 1937
68) W. W. UMBREIT 外2名: “Manometric Techniques and Tissue Metabolism.” 185-197, 1951
69) 中村道雄: 日本農芸化学会誌, 24, 1, 1950
70) D. M. NEEDHAM: Phys. rev., 1928
71) K. BAILEY: “Advace in Protein Chemistry”, 1, 279, 294-295, 297, 299, 1544
A study on the Freshness of Fish Meat

with Special Reference to the Determination of Rigor Mortis

Summary

The present work has been undertaken to obtain a method or methods by which to extend the duration of the rigor mortis and keep fish meat as fresh as possible. To begin with, the author studied a phase of muscle contractions that often occur in the freshest meat of some species when rinsed in water, a case which is known among Japanese as "arai" phenomenon. Because it was thought feasible to adopt this particular muscle contraction as a criterion in judging degree of the freshness.

I. Relationship between the Muscle Contraction Caused by Rinsing and the Swimming Behaviour of Fish

It has been found from the studies that the amount of muscle contraction varies depending not only on the degree of freshness, but also on differences in species, killing methods, and anatomical parts of the body from which a sample was taken.

For instance, samples of eleven species killed immediately after catch were studied. The results revealed that in most cases the "red meat" of migratory fish such as mackerels and yellowtails would not shrink so noticeably as the "white meat" of the sedentary including carp, sea breams, puffers, and star gazers. Among anatomical parts of the body, the meat sampled out of the parts performing vigorous movements showed a high contraction of the muscle.
The amount of the contraction is closely correlated with pH of meat sap, and the amounts of glycogen and ATP present in the meat. For the larger the content of ATP in the meat which is neutral in pH, the higher the contraction; the smaller the ATP content in the meat with pH on the acid side, the lower the contraction. Generally speaking, fishes containing high glycogen in meat tend to show the acid side pH value in meat sap and the less contraction of the muscle.

The relationship between the amount of ATP-phosphate and the degree of muscle contraction is different from species to species; in other words, the contraction caused by a given amount of ATP is greater in some fishes than the other. They are such a type of fish that moves rather occasionally but with a sudden action; as their body structure does not seem well adapted for continuous swimming. A fact that the contraction of muscles rinsed in water differs in degree dependently on species and anatomical positions was assumed to be ascivable mainly to glycolysis in the muscle, as it has an important relation with the muscle movement. The assumption may be verified when one compares differences in swimming behaviours and possible biochemical processes between the two types of fish, the migratory and the sedentary.

The “red meat” fish migrating far and wide would require a large stock of glycogen with active glycolysis in order to make up for quantities of ATP consumed in the course of the ceaseless swimming; as a result, the pH of muscle sap is apt to decrease, then the muscle contracts but little. The slight muscle contraction is, however, compensated by the body form quite fitted for swift and continuous movement, and the very movement is, in turn, made possible by that slight contraction.

On the other hand, the “white meat” sedentary, whose form is much less fitted for swift swimming, consume only a small quantity of ATP under a normal condition when they lie almost still. Accordingly they need neither a large amount of glycogen in muscle, hence nor heavy glycolysis. When running after food animals or away from enemies, however, they would have to swim very fast with the muscle contraction as strong as could be produced, as their form does not seem suitable for smooth movement. For that reason they must maintain quantities of ATP in the muscle and keep the pH of meat sap neutral in order that the decomposition of ATP may actively proceed. It can be said that the fish of this type, apparently with a few glycogen and slow glycolysis, would move very vigorously only at a necessary moment but soon become exhausted.

II. Mechanism of the Muscle Contraction in Rinsing

In regard to the mechanism of muscle contraction when perfused in water a hypothesis is proposed here. The so-called “arai” phenomenon would be one of varieties of muscle contraction that is taken place by the structural changes of protein molecule ensuing from the hydration of it’s activated radicals, along with the decomposition of ATP involved. The hydration progresses in accordance with the dissociation or ion-exchange of K-ion, which has been bound to the muscle protein, due to the disturbance of ionic equilibrium given rise by the perfusion of a salt solution or water.
III. The Muscle Contraction in Perfusion as a Criterion of the freshness under Rigor Mortis

The post-mortem change in the degree of contraction of fish meat caused by the perfusing water has been studied in connection with fluctuations in the pH value of meat sap, and the amounts of glycogen, ATP and free SH-group in the meat. The results are indicative that these values all synchronously and rapidly decrease in the course of time after death particularly, reaching the minima at the full rigor state, the amounts both of ATP and of contraction during perfusion become zero at that state.

The patterns of changes in these values, even when the material was treated differently as to killing methods and temperature under which it stood, well coincided with the freshness of meat judged through sensual observation. The fact points to a few suggestions. One of them is that it would be possible to determine quantitatively the freshness of fish meat during the rigor mortis period from the degree of muscle contraction in perfusion. Another is that it would also be possible to estimate through the measurement of muscle contraction the time leading up to the relaxation of rigor mortis and the amount of the death throes, the latter of which seems to be a factor affecting the freshness as will be discussed later.

As for the influence of temperature upon the progress of rigor mortis, it has been revealed that $Q_10 \approx 2.1$ in the range from 0° to 30° C, in the case of a beheaded carp, and therefore that the rigor mortis period is to be extended about 2.1 times by lowering temperature every ten degree in Centigrade.

IV. Rigor Mortis in the Fish Meat

The samples used consisted of muscles of mackerel and carp, the first of which have hitherto been thought to lose freshness faster than the latter. The result was such as to lead one to the conclusion that the difference in the rigor mortis progress would be attributable to the activity of glycolysis during the death struggle rather than to the difference in species.

As for a cause of putrefaction readily occurring in the "red meat" migrator, the author has been skeptical about an accepted interpretation that the highly active auto-catalyses in that type of meat would be responsible for the phenomenon. Because there are enough reasons to believe that the violent struggle at the moribund state would make a large amount of glycogen in the muscles decompose actively to be followed by a prompt decline in pH of the muscle sap. For instance, a fish died a moment ago would often indicate pH having already lowered below 6.0. Accordingly, ATP in the muscle is quickly decomposed, without sufficient regeneration into inorganic phosphoric acid until completely disappearing from the meat. In this way the rigor mortis of the migrator advances and soon attain the full rigor state before the subsequent relaxation to set in.

Whereas, the "white meat" settler when caught, does not struggle so much as the migrator. Since there is found in their meat only a small quantity of glycogen to decompose rather weakly, they are usually killed while holding still a high pH of meat sap as it is. Consequently the post-mortem regeneration of ATP is efficiently checking the break-down
into inorganic phosphoric acid and retarding the progress in rigor mortis. Thus, as long as
the rigor state lasts, high freshness can be secured for the meat. In short, no matter whether
a fish belongs to the “red meat” migrator or the “white meat” settler, its muscle would soon
pass through the rigor mortis and become putrid, if undergone a prolonged death throes, the
muscle which could be kept highly fresh for a length of time, had they been killed
without delay.

V. Influence of Freezing and Immersion upon the
Advancement of Rigor Mortis

It appeared to the author that both freezing and defrosting would have an effect upon the
muscle contraction as same as the perfusion does. Particularly, in a fresh fish containing ATP,
the freezing would cause the muscle contraction just like a perfusing solution of a high salt
concentration produces, and so the thawing would have it as the case with perfusion in diluted
salt solution, both bringing the fish meat to the rigor state. It has also been revealed that,
when the fish is immersed in water, the water penetrates into the muscle through the skin,
causing the body weight to increase and the muscle to shrink through the same mechanism
as in perfusion before long the full rigor state being reached.

VI. Conclusion

In order to preserve fish meat fresh for a longer period, it is most essential to minimize
the death struggle of fish by hauling them up on board as soon as they have been caught
and either by destroying the spinal cord or by decapitating. The lowest storing temperature
allowable is recommended to the fish not destined for freezing.

To leave fish in the throes or to immerse a dead fish in water is very detrimental to the
freshness. It is true that immersion of the catch in icy water or cold brine and the refrigeration
of fish may as well check the putrefaction due to bacterial activities to some extent.
Nevertheless, such treatments can hardly warrant possibility of extending the rigor mortis
period and thereby maintaining high freshness of fish meat for a length of time.