日本海西南海域の二そうびき沖合底びき網
漁業におけるヤリイカ漁況予測の現状

北 沢 博 夫
（鳥取県水産試験場）

日本海西南海域で操業する二そうびき沖合底びき網漁業（以下沖底とする）の漁獲量は近年減少傾向にあるが、イカ類は比較的安定した高い漁獲量を維持している（図1）。イカ類の中にはヤリイカ、「シロイカ」（ケンサキイカ・ブドウイカの地方名称）、スルメイカ、甲イカ類が含まれ、ヤリイカはこのうち30〜60％程度を占める重要種で、年による変動は大きいのが、冬から春にかけて沖底の最も重要な漁獲対象種である。このため本種の豊穣が漁業に与える影響は大きい。本報では当海域での漁獲量と水温資料をもとに本種の漁況予測の可能性を検討し、2、3の知見を得たので報告する。

図1 沖底漁獲物の主要種合計の1網当たり漁獲量の経年変動
（破線は変動傾向を直線または二次曲線で示したもの）
材料と方法

用いた資料は1968年から1986年の水産庁統計*1と1981年から1987年の浜田市漁業協同組合統計*2ならびに水産庁の漁業統計事業の一環として日本海辺各府県が実施している海洋観測で得られた1975年から1986年の本海域における水温資料を基に長沼*3が求めた水温指標である。この水温指標は東経129°0′から131°北緯28°30′以南の海域を規定水域とし、水深100mの水温が3月と6月では10℃以下、9月と11月では15℃以下の海域を冷水域として規定水域に占める水温水域の面積割合を示したものである。さらに長沼は東経129°30′から131°北緯34°30′から35°30′の海域（ただし129°30′～130°E, 34°30′～35°Nの30′絵図を除く）をヤリカ漁場とし、この海域の水深50mの年平均水温を求めた。

生物情報としては浜田市漁業協同組合（以下浜田市漁業とある）で1986年8月から1987年3月に水揚げされたヤリカの銘柄別漁獲数と銘柄別外套長測定記録から漁獲物の外套長組成を推定し漁獲群の性状を調べた。なお、漁業情報を得るため沖底漁業者に漁場の変化等について聞き取り調査を実施した。

結果と考察

漁場：図2に島根・山口両県の沖底の漁場図を示した。主な漁場は浜田から対馬の海域と対馬以西に二分された形となっているが、ヤリカの主漁場は対馬から浜田の日本海である。この広大な

図2 沖底の漁場図と漁区番号（黒丸は乗船した1航段の操業海区を示す）

*1 以西町びと水産業等漁獲成績書集計
*2 浜田市漁業協同組合水揚げ報告書
*3 長沼光一氏（日本海区水産研究所）から整理された資料を頂いた。

聞き取り調査によると、ヤリイカは例年9月上旬から中旬にかけてまとまった漁獲がみられるようになるが、その魚体は外観長10cm前後の未熟個体で、漁場は900漁区という。魚群は9月から11月頃までは水深150〜160mまでの沖底漁場と漁場外（漁業者によると漁場より深い所）で加入、逸散を繰り返し、群に当たった時は大量、当たらないときは不漁ということである。12月から盛漁期（本種の成熟期に当たる）を迎えるが、その頃から漁場は南に移動し、終漁期（3月）になると規制ライン付近まで広がる。また、その頃対馬南方の201、211漁区の漁の付近でまとまった漁獲があるということ。

操業時間帯による入網状況は12月ないし1月まで昼間しか入網せず、それ以降夜間の入網もみられるということであった。

以上の聞き取り調査結果は本種が集団性を持つこと、漁場外から加入してくること、底層以外の生活圏を持つことなどを示唆している。

漁獲量の変動と水温との関係： 図4に漁獲量の月・年変化を示した。ただし、ここでは本種が春から翌年の春までという約1年の寿命を持つことから、年を歴年ではなく、8月から翌年の5月までという漁業年として扱った（例えば1975年漁期は1975年8月から1976年5月までである）。漁獲量は近年減少傾向にあるとみられるが、変動パターンとしては3年ないし4年で増減を繰り返している。特に好漁年の翌年に不漁年となることは特徴的である。

さて、この変動傾向についてまず漁業の側から考える。漁獲量は資源量と漁獲率で決定されるが、漁獲率は漁業者の対象魚種選択、環境による高密度漁場の形成などで年によりかなり変化することが予想される。また、資源量が多ければ漁獲が集中し、少なければ漁獲圧が分散することも考えられ
図4 クリオカ漁獲量の経月・経年（漁期年）変動

であるため漁獲量は必ずしも資源量を反映するとは限らない。極端な例として加入量一定の場合を考えると漁獲量の増大は資源量の減少を意味する。この考えに従うと漁獲量のピークが顕著な76, 78, 83年漁期は資源量に対し漁獲が過大であり、再生産に関与する親魚残量が少なく、翌年は急激な減少となったということが考えられる。近年の減少傾向については図1で示したように沖底の他種漁獲量が減少しているため、比較的多獲される本種への漁獲圧が高まってきた結果（聞き取り調査結果と漁獲量の経年変化から1972年前後から1980年前後にかけては漁獲量が増加傾向にあると考えられる）と説明できる。ただし、この説明は実証的資料が皆無であり、現段階では「想像」にすぎない。

次に環境決定論的に考える指標として長沼が求めた水温指標と漁獲量の関係をみてみる。図5に水温指標の経年変化を示した。1975年から1986年の間をみると50m深の平均水温は低温化の傾向にあり、3月と6月の冷水域面積比率も増加傾向にあるようにみえる。クリオカ漁獲量の年変動を1975年以降減少傾向にあるとみると上述の水温指標の傾向と関連づけた見方ができる。冷水面積比
率の増減をみていくと、3月と6月では、'77、'81、'84、'86の各年に比率が大きく、'76、'78～'80、'82で比率が小さい。一方、漁獲の不漁年は'77、'81、'84の各年漁期であり、逆に豊漁年は'76、'80、'83の各年漁期である。以上述べたように、本種の漁獲量は水温と関係していると考えられるため、漁獲量および漁獲の豊図指数と3、6、9、11月の冷水面積比率および年平均水温の相関を調べた。なお豊図指数とは資源量の大きさによって漁獲量の変動の幅も変化すると考えられるため、次式で求めた指標値である。

豊図指数Ⅰ = 漁獲量 - 3年間の移動平均 / 3年間の移動平均

豊図指数Ⅱ = 漁獲量 - 指数回帰した回帰値 / 指数回帰した回帰値

(豊図指数Ⅱでは漁獲量の経年変化が近似的に指数関数に従うものとした)

各項目と漁獲量および豊図指数との関係の中では、3月と6月の冷水面積比率とその年にかけての漁期漁獲量および豊図指数に相関が認められた。図6に面積率と漁獲量、図7に面積率

図5 長沼の求めた水温指標の経年変動

図6 3・6月の冷水面積比率と漁獲量の関係
（3月 α = 0.1、6月 α = 0.01で有意）
図7-1 3・6月の冷水域比率と豊凶指数Iの関係
(3月 \(\alpha = 0.05 \), 6月 \(\alpha = 0.01 \)): で有意ただし6月では78を除く

図7-2 3・6月の冷水域比率と豊凶指数IIの関係
(6月75-78年を除けば \(\alpha = 0.01 \)で有意)
と豊図指数のそれぞれの関係を示した。年によるばらつきがかなりあるため、それほど顕著ではないが、春から夏にかけて冷水の占める比率が小さいほど漁獲が良いようである。春から初夏にかけては本種の産卵から生活初期にあたり、冷水勢力の強弱と漁獲量（ここではある程度資源量を反映するとする）に相関があるということは、冷水がヤリカの産卵量や生残などに影響を与えることを示唆している。

漁況予測の現状と問題点：ヤリカの水深別季節変化（北沢 1987）から沖底の主操業水深帯である120〜150mは未熟期の通過域ないし滞留域と考えられる。したがって、8月から10月頃までの漁獲量を調べることによって漁期中の漁獲量がある程度推定されるはずである。図8に島根・山口両県の沖底、図9に浜田市漁協の沖底の8月から10月の漁獲量と漁期中の全漁獲量の関係を示した。図からこの両漁獲量の関係には高い相関が認められ、前述の推論は誤っていると考えられる。現在はこの回帰式を用いて漁期中の漁獲量予測を実施しているが、この手法は漁獲が始まってからでないと使いえないという欠点がある。前項で示した水温指標からの予測も可能であるが、'78年75年漁期のように予測値を大きく下回る場合がある。さらに、豊図指数では漁獲変動を近似的に指数関数で示しており問題がないとは言えない。以上の理由から現状では時間的な問題はあるものの危険の少ない8月から10月の漁獲量を用いた予測を実施している。

図8 沖底（島根・山口）の8〜10月漁獲量と漁期中の全漁獲量の関係
図9 浜田市漁協所属沖底の1統当たり8〜10月漁獲量と漁期中の1統当たり漁獲量の関係

-19-
1986－1987年沖底

図10 1986年漁期における沖底漁獲物の体長組成
（nは推定漁獲尾数）

さて、これらの予測について生物学的な面から若干の問題を考える。図10に86年漁期の体長組成と漁獲尾数を示した。同図から、当海域における漁獲物の特徴として、雌雄ともに複数の群が存在すること、盛漁期（12月以降）になると大型個体群が出現することなどがわかる。これらを整理して、筆者は本種の生活史の概要について「本海域におけるヤリイカの雌には沖底の漁場内に分布範囲をとどめる小型群と漁場外に出して再加入していく、あるいは他の海域から加入してくる大型群がある。雌には雄ほど顕著に体長の異なる群はないが、複数の群が存在し漁場には大型群から加入してくる。」と考えた（北沢 1988）。漁況予測の面から考えると沖底が主対象とする漁獲群は雌を別
にして雄では大型群である。この大型群の起源、例えば成長差によるものか、発生期、発生場所によるものかなどの本種の生活史、生殖過程を明らかにすることによって漁況予測の精度を向上させるとともに資源の有効利用方法について検討していきたい。

要　約

島根県と山口県の二そうびき沖合底びき網漁業におけるヤリイカ漁獲量と当漁業が漁場としている海域の水温を分析し、以下の結果を得た。
1. ヤリイカの漁獲量は近年減少傾向にあるが、変動パターンとしては3ないし4年で増減を繰り返している。
2. 漁獲量の変動要因の一つとして、春期から初夏の低水温域の広さとの関係を示し、低水温域が広いほど漁獲量が少ないという関係が認められた。
3. 本種の8月から10月の漁獲量と漁期中の全漁獲量には高い相関が認められた。

文　献

1）北沢博夫（1987）. 昭和61年度沿岸重要漁業資源委託調査. ヤリイカ資源研究会議報告. 日水研：45–53.
2）北沢博夫（1988）. 昭和62年度沿岸重要漁業資源委託調査. ヤリイカ資源研究会議報告. 日水研：7–11.