Expansion of Growth Curves Using a Periodic Function and BASIC Programs by MARQUARDT'S Method

Tatsuro Akamine¹⁾

Abstract

The growth curves of von Bertalanffy, logistic and Gompertz models were expanded using a periodic function, f(t+1) = f(t). Each model was expanded into $l = l_{\infty}(1 - \exp h_1)$, $l = l_{\infty}/(1 + \exp h_1)$ and $l = l_{\infty}\exp(-\exp h_1)$ where $h_1 = -K\{F(t) - F(t_0)\}$, F' = f, $f = (1+a)/2 + (1-a)/2 \cdot \cos 2\pi (t-t_1)$: $a \le f \le 1$.

BASIC programs for each model were written by Marquardt's method according to Akamine (1985). The following subjects were also considered: an expansion into another type, a parameter-error analysis, a comparison with the original model and with Walford's graphical method, and a calculation to determine the extreme points of the growth rate. This expansion of the growth curves is useful and the programs are easily applied to other curves.

I. Introduction

For displaying growth curves, von Bertalanffy, logistic and Gompertz models are widely used. However, it is often difficult to use such curves for data obtained from short intervals since the growth rates of aquatic organisms are periodically affected by such variables as water temperature. Data is not used effectively because Walford's graphical method is mainly used for calculations.

PITCHER and MACDONALD (1973) and PAULY and DAVID (1981) had already expanded growth curves. But these have not been widely used because related methods of calculation were not very useful. On the other hand, Conway *et al* (1970) had already used Marquardt's method for a logistic model, a FORTRAN program for large computers (only).

This paper has been written to allow its application to any type of growth curve. Two types of expansions using periodic functions are considered. The BASIC programs of Marquardt's method were modified according to Akamine (1985) and tested using artificial data.

Received: 19 November, 1985. Contribution A No.432 from the Japan Sea Regional Fisheries Research Laboratory

¹⁾ Japan Sea Regional Fisheries Research Laboratory, suido-cho, Niigata 951, Japan. 〒951 新潟市水道町1丁目5939-22 日本海区水産研究所

II. Expansion of VON BERTALANFFY model

1. Modeling of a growth curve

The differential equation of von Bertalanffy model is

$$\frac{dl}{dt} = a(l - l),$$
 where $a = \text{const.}$

The integral of equation (1) with an initial condition, when $t=t_0$ let l=0, is

$$l = l_{\infty}(1 - \exp h_0)$$
, where $h_0 = -K(t - t_0)$. —(2)

This is a "type-0" equation. The differential of equation (2) is

$$\frac{dl}{dt} = a^* \exp h_0$$
, where $a^* = K l_{\infty}$.

From equations (1) and (3), if the growth rate changes periodically along with the water temperature, there are two types of models:

$$\frac{dl}{dt} = a(l_{\infty} - l)f(t) \qquad - - 4$$

and

$$\frac{dl}{dt} = a^*(\exp h_0) f(t) \tag{5}$$

The period of the water temperature is I, as follows:

$$f(t+1)=f(t) \qquad \qquad ---(6)$$

Let equation (4) be a "type-l" equation and equation (5) be a "type-2" equation. First, consider the type-l equation. The integral of quation (4) with the same initial condition as the type-0 equation is

$$l = l_{\infty}(1 - \exp h_1)$$
, where $h_1 = -K\{F(t) - F(t_0)\}$ —(7)
and $F = \int f dt$.

The differential of equation (7) is

$$\frac{dl}{dt} = a^*(\exp h_1) f(t). \tag{9}$$

Next, consider the type-2 equation. The integral of equation (5) with the same initial condition as the type-0 equation is

$$l=l_{\infty}\{1-\frac{G(t)}{G(t_0)}\exp h_0\}=l_{\infty}(1-\exp h_2), \quad \text{where} \qquad ---\text{(10)}$$

$$h_2=h_0+\ln G(t)-\ln G(t_0) \qquad \qquad \text{and} \qquad G\exp h_0=\int f\exp h_0 dt. \qquad ---\text{(11)}$$

A comparison between equation (9) and equation (5) makes it easy to understand the difference between type-1 and type-2 equations.

Now, let's consider G. Equation (11) becomes

$$G'+Gh'_0=fh'_0$$
, where $h'_0=-K$, $f(t+1)=f(t)$

and
$$G'(t+1)-G'(t)=K\{G(t+1)-G(t)\}.$$

Then,

$$G(t+1)-G(t)=C\exp(Kt)$$
 (C=const.\ge 0).

G(n) can be written as

$$G(n) = C \frac{\exp(Kn) - 1}{\exp(K-1)} + G(0).$$

A particular solution of equation (12) is,

$$G(t) = a \exp(Kt) + b$$
,

and its general solution of equation (12) is,

$$G(t) = a \exp(Kt) + b + g(t)$$
, where $g(t+1) = g(t)$.

The first term on the right side of equation (13) is the constant term $G\exp h_0$, considered to be an integral constant. Therefore, it is natural to let G be

$$G(t+1)=G(t)$$
. —(14)

2. The practical model

Many forms can be used for the periodic function f. In this paper, the simplest function is used:

$$f(t) = \frac{1+a}{2} + \frac{1-a}{2} \cos 2\pi (t-t_1)$$
, where $a \le f \le 1$. —(15)

Therefore,

$$F(t) = \frac{1+a}{2}t + \frac{1-a}{4\pi}\sin 2\pi(t-t_1)$$
, and ——(16)

$$G(t) = \frac{1+a}{2} + \frac{1-a}{2} \frac{K}{K^2 + 4\pi^2} \{ K \cos 2\pi (t - t_1) - 2\pi \sin 2\pi (t - t_1) \}$$

$$= \frac{1+a}{2} + \frac{1-a}{2} \cos\theta \cos\{\theta + 2\pi(t-t_1)\}, \text{ where } \cos\theta = \frac{K}{\sqrt{K^2 + 4\pi^2}}.$$

Then, equation (7) becomes essentially the same as the models of Pitcher and Macdonald (1973) and Pauly and David (1981). Examples were shown in the former study for a=-1 and in the latter for a=0 (because their calculating methods were not so useful).

3. The calculating method

(1) Outline

In general, Newton's method or the steepest descent method is sufficient when the number of parameters is less than or equal to 3. Marquard's method is most appropriate when there are more than 3 parameters. Marquard's method has been adopted in this program, since the number of type-1 and type-2 parameters are both 5. It is also useful for more complicated functions of f.

A weighted least-squares method was adopted for the object function. When the data are $(t_1, l_{01}, \sigma_1), \dots, (t_n, l_{0n}, \sigma_n)$, the object function is

$$Y = \sum_{i=1}^{n} \frac{(l_{0i} - l)^{2}}{\sigma_{i}^{2}}.$$
 (18)

If $\sigma_i = 1$ $(i=1 \sim n)$, it becomes a normal least-squares procedure.

This BASIC program has been rewritten according to the program of Akamine(1985). but the method for scaling the parameters is according to Marquardt(1963).

(2) Marquardt's method

MARQUARDT's method is expressed as follows (in the case of searching for the minimal point).

$$(H+\lambda I) \Delta \theta = g \qquad \qquad ---\text{(19)}$$

$$H = \left(\frac{\partial^2 Y}{\partial \theta_i \partial \theta_j}\right) = \left(\frac{\partial^2 Y}{\partial l^2} - \frac{\partial l}{\partial \theta_i} - \frac{\partial l}{\partial \theta_j}\right) = \frac{\partial^2 Y}{\partial l^2} - \frac{\partial l}{\partial \theta} \left(\frac{\partial l}{\partial \theta}\right)$$

$$g = -\frac{\partial Y}{\partial \theta} = -\frac{\partial Y}{\partial l} - \frac{\partial l}{\partial \theta}$$

$$\begin{cases} I : \text{unit matrix} \\ \Delta \theta : \text{correction of } \theta \\ {}^t A : \text{transposed matrix of } A \end{cases}$$

When λ is large, the method approaches the steepest descent method, as follows:

$$\Delta \theta \stackrel{\cdot}{=} \frac{1}{\lambda} g$$
 . —(20)

On the other hand, when λ is small it approaches Newton's method, as follows:

$$H \Delta \theta \rightleftharpoons g$$
 . ——21

The steepest descent method is stable but has a slow convergence; Newton's method has the opposite characteristics. Therefore, in order to obtain a good convergence, it is natural to first set λ to be large; then, to make it smaller, step-by-step. In general, let $\nu=2$, when $\Delta Y < 0$, then let λ be smaller as $\lambda^{\text{new}} = \lambda^{\text{old}}/\nu$ and continue the calculation. On the other hand, when $\Delta Y \ge 0$, let λ be larger as $\lambda^{\text{new}} = \lambda^{\text{old}*} \nu$ and again try the same iteration term of calculation.

(3) Scaling of parameters

Though a scaling of the parameters does not affect the convergence while using Newton's method, it affects the convergence while using the steepest descent method. The reason for this phenomenon is that the scaling is equivalent to a simple linear transformation, and does not maintain orthogonality. Marquardt's method is similar to the steepest descent method when λ is at first large; thus, it is necessary to adequately scale the parameters. The scaling of the parameters can be expressed as follows:

$$\theta_{i}^{*} = s_{i}\theta_{i} \qquad , \quad \Delta\theta_{i}^{*} = s_{i}\Delta\theta_{i} \qquad ---(22)$$

$$\frac{\partial Y}{\partial \theta_{i}^{*}} = \frac{1}{s_{i}} \frac{\partial Y}{\partial \theta_{i}} \qquad , \quad \frac{\partial^{2}Y}{\partial \theta_{i}^{*} \partial \theta_{j}^{*}} = \frac{1}{s_{i}s_{j}} \frac{\partial^{2}Y}{\partial \theta_{i}\partial \theta_{j}}$$

Using matrix notation, the above can be expressed as

$$\theta^* = S\theta \qquad , \quad \Delta\theta^* = S\Delta\theta \qquad \qquad --(23)$$

$$g^* = S^{-1}g \qquad , \quad H^* = S^{-1}HS^{-1}$$

$$S = \begin{pmatrix} s_1 \\ \\ \\ s_n \end{pmatrix} , \quad S^{-1} = \begin{pmatrix} \frac{1}{s_1} \\ \\ \frac{1}{s_n} \end{pmatrix}$$

S is a symmetric but non-orthogonal matrix.

Marquardt (1963) chose S_1 (for S) as follows.

$$S_1 = \begin{pmatrix} V & h_{11} \\ V & h_{nn} \end{pmatrix}$$
, $H = (h_{ij})$

This same type operation is also used to make a correlation matrix from a covariance matrix; then the diagonal components of $H_1^*=S_1^{-1}\,HS_1^{-1}$ are all 1. Therefore, it is expected that λ affects each parameter equally. Then, a good convergence is produced and the initial value of λ can be set at 0.01 for the least-squares method.

On the other hand, Akamine (1984, 1985) chose S_2 (for S) as follows.

$$S_2 = \begin{pmatrix} \frac{1}{\theta_1} \\ \frac{1}{\theta_n} \end{pmatrix} \tag{25}$$

Now, it becomes easy to determine parameter errors, since each length of a parameter becomes 1. However, convergence would be a little better by S_1 rather than S_2 .

(4) Partial differential of each parameter

Using Marquard's method, it is necessary to calculate the partial differential of each parameter. In this program such calculations are computed directly by its expression, since convergence is slower when difference approximation is used. The partial differential expressions of each curve are given below.

For a type-0 equation, it follows from equation (2) that,

$$\frac{\partial l}{\partial l_{\infty}} = 1 - \exp h_0 \qquad \qquad (26)$$

$$\theta = K, t_0$$

$$\frac{\partial l}{\partial \theta} = -l_{\infty} (\exp h_0) \frac{\partial h_0}{\partial \theta}$$

$$\begin{cases}
\frac{\partial h_0}{\partial K} = -(t - t_0) \\
\frac{\partial h_0}{\partial t_0} = K
\end{cases}$$

For a type-1 equation, it follows from equation (7) that,

$$\frac{\partial l}{\partial l_{\infty}} = 1 - \exp h_1 \qquad --27$$

$$\theta = K, \ t_0, \ t_1, \ a$$

$$\frac{\partial l}{\partial \theta} = -l_{\infty} (\exp h_1) \frac{\partial h_1}{\partial \theta}$$

$$\begin{cases} \frac{\partial h_1}{\partial K} = -\{F(t) - F(t_0)\} \\ \frac{\partial h_1}{\partial t_0} = K \frac{\partial F(t_0)}{\partial t_0} \\ \frac{\partial h_1}{\partial t_1} = -K \left\{ \frac{\partial F(t)}{\partial t_1} - \frac{\partial F(t_0)}{\partial t_1} \right\} \\ \frac{\partial h_1}{\partial a} = -K \left\{ \frac{\partial F(t)}{\partial a} - \frac{\partial F(t_0)}{\partial a} \right\}$$

$$\begin{cases} \frac{\partial F(t_0)}{\partial t_0} = f(t_0) \\ \frac{\partial F(t)}{\partial t_1} = -\frac{1-a}{2} \cos 2\pi (t-t_1) \\ \frac{\partial F(t)}{\partial a} = \frac{1}{2} t - \frac{1}{4\pi} \sin 2\pi (t-t_1) \end{cases}$$

For a type-2 equation, it follows from equation (10) that,

$$\frac{\partial l}{\partial l_{co}} = 1 - \exp h_2$$
 — (28)

$$\theta = K$$
, t_0 , t_1 , α

$$\begin{split} \frac{\partial l}{\partial \theta} &= -l_{\infty}(\exp h_2) \frac{\partial h_2}{\partial \theta} \\ \left(\frac{\partial h_2}{\partial K} = -(t - t_0) + \frac{\partial \ln G(t)}{\partial K} - \frac{\partial \ln G(t_0)}{\partial K} \right) \\ \frac{\partial h_2}{\partial t_0} &= K - \frac{\partial \ln G(t_0)}{\partial t_0} \\ \frac{\partial h_2}{\partial t_1} &= \frac{\partial \ln G(t)}{\partial t_1} - \frac{\partial \ln G(t_0)}{\partial t_1} \\ \frac{\partial h_2}{\partial a} &= \frac{\partial \ln G(t)}{\partial a} - \frac{\partial \ln G(t_0)}{\partial a} \\ &= \frac{\partial \ln G(t)}{\partial \theta} = \frac{\partial G(t)}{\partial \theta} / G(t) \\ \left(\frac{\partial G(t)}{\partial K} = \frac{1 - a}{2} \sin \{2\theta + 2\pi(t - t_1)\} \right) \\ &= \frac{1 - a}{2} \frac{2\pi}{(K^2 + 4\pi^2)^2} \{4\pi K \cos 2\pi(t - t_1) + (K^2 - 4\pi^2) \sin 2\pi(t - t_1)\} \\ \frac{\partial G(t_0)}{\partial t_0} &= -\frac{\partial G(t_0)}{\partial t_1} \\ \frac{\partial G(t)}{\partial t_1} &= \frac{1 - a}{2} \cos \theta 2\pi \sin \{\theta + 2\pi(t - t_1)\} \\ &= \frac{1 - a}{2} \frac{2\pi K}{K^2 + 4\pi^2} \{K \sin 2\pi(t - t_1) + 2\pi \cos 2\pi(t - t_1)\} \\ \frac{\partial G(t)}{\partial a} &= \frac{1}{2} - \frac{1}{2} \cos \theta \cos \{\theta + 2\pi(t - t_1)\} \end{split}$$

The following relationships can be derived from equation (17):

$$\begin{split} \cos\theta\cos\left\{\theta+2\pi(t-t_1)\right\} &= \frac{1}{2} \left[\cos\left\{2\theta+2\pi(t-t_1)\right\} + \cos2\pi(t-t_1)\right] \\ &\frac{\partial G}{\partial K} = -\frac{1-a}{2} \sin\left\{2\theta+2\pi(t-t_1)\right\} \frac{\partial \theta}{\partial K} \\ &(\tan\theta)' = \theta'/\cos^2\theta \\ &\frac{\partial \theta}{\partial K} = \frac{-2\pi}{K^2+4\pi^2} \end{split}$$

(5) Programs of curves

Program 1 is a type-0 program. Programs 2 and 3 are parts of type-1 and type-2 programs different from a type-0 program.

The programs are based on Akamine (1985), but the scaling method is according to Marquardt (1963). Gauss' method of elimnation is used to solve simultaneous linear equations. Because \boldsymbol{H} is a symmetric matrix, only the upper triangular part of \boldsymbol{H} is used for a calculation and the lower triangular part of \boldsymbol{H} is used for saving the initial values of \boldsymbol{H} for a further calculation, with $\lambda^{\text{new}} = \lambda^{\text{old}} * \nu$ when $\Delta Y \geq 0$. The covergence criterion is that λ is continously made (10 times) larger. The Iteration times become large if the precision of the computer is high.

4. Consideration of models

By comparing h_1 and h_2 , it can be seem that both expressions have the same form. Such a form is produced by adding a periodic changing part to a linear increasing part.

$$h_{i} = -K_{i} \{t - C_{i} - H_{i}(t)\}, \quad \text{where} \quad C_{i} = \text{const.} \quad --29$$

$$\text{and} \quad H_{i}(t+1) = H_{i}(t).$$

$$\begin{cases} K_{1} = \frac{1+a}{2}K \\ C_{1} = \frac{2}{1+a}F(t_{0}) \\ H_{1} = -\frac{1}{2\pi}\frac{1-a}{1+a}\sin 2\pi(t-t_{1}) \end{cases}$$

$$\begin{cases} K_{2} = K \\ C_{2} = t_{0} - \frac{\ln G(t_{0})}{K} \\ H_{2} = \frac{\ln G(t)}{K} \end{cases}$$

Then, each type-1 and -2 curve can be surrounded on both sides by two von Bertalanffy curves (equation 31) as follows:

$$\min H_{i} \leq H_{i} \leq \max H_{i}$$

$$\min t_{0i} \leq C_{i} + H_{i} \leq \max t_{0i} \qquad --30$$

$$\max \min l_{i} = l_{\infty} (1 - \exp h_{i}^{*}), \quad \text{where} \qquad \min h_{i}^{*} = -K_{i} (t - \max t_{0i})$$

Therefore, when sampling intervals are all 1 as $t_{i+1}-t_i=1$ ($i=1\sim n-1$), there is only one solution of K; but t_0 has a range similar to equation (30) (type-0). One should be careful when comparing values of t_0 when using von Bertalanffy model (type-0).

Next, consider H_2 . If $K \ll 2\pi$, the following relationships exist:

$$\cos\theta = \frac{K}{\sqrt{K^2 + 4\pi^2}} = \frac{K}{2\pi} \ll 1, \quad \theta = \frac{\pi}{2},$$
 and
$$\cos(\frac{\pi}{2} + t) = -\sin t.$$

If $x \ll 1$, then $\ln(1+x) \rightleftharpoons x$.

Therefore the following equation is obtained from equation (17):

$$G(t) = \frac{1+a}{2} \left(1 + \frac{1-a}{1+a} \cos \theta \cos \{\theta + 2\pi(t-t_1)\} \right)$$

$$\ln G(t) \rightleftharpoons \ln \frac{1+a}{2} - \frac{1-a}{1+a} \frac{K}{2\pi} \sin 2\pi(t-t_1).$$

The first term on the right side would be eliminated by the term $-\ln G(t_0)$;

then, it becomes

$$H_2 \stackrel{\cdot}{=} -\frac{1}{2\pi} \frac{1-a}{1+a} \sin 2\pi (t-t_1) = H_1.$$

This expression can be regarded as

$$h_1 \rightleftharpoons h_2$$
 — 62

In general, K for aquatic organisms is much smaller than 2π ($K \le 2\pi$). Also, an expansion of a type-1 equation is more natural than that of a type-2 equation. Therefore, it is practical to use only type-1.

5. Extreme points of the growth rate

Though the water temperature is extreme at f'=0, the growth rate is extreme at l''=0. Both points differ as follows:

$$\frac{d^2l}{dt^2} = -l_{\infty} \exp h_i (h'_i{}^2 + h'_i{}') = 0$$

$$h'_i{}^2 + h'_i{}' = 0.$$

The above becomes the following for a type-1 situation:

$$h'_{i} = -Kf, \quad h'_{i}' = -Kf'$$

and $Kf^{2} - f' = 0.$

This equation can not be solved analytically and Newton's method should be used:

$$y = Kf^{2} - f', \qquad y' = 2Kff' - f''$$

$$\Delta t = -\frac{y}{y'}$$

This iteration converges easily since the number of parameters is only 1.

In a type-2 equation, from equations (10) and (3) with G'-KG=-Kf, it becomes

$$Kf-f'=0.$$

However, in this case equation (36) is more easily obtained directly from equation (5). Though this can be solved analytically, Newton's method has also been used, just as for a type-1 situation.

6. Error of parameters

An estimation of parameter errors is performed according to Akamine (1985). The following approximate equation is considered to be in the neighbourhood of the solution:

$$\Delta Y \rightleftharpoons \frac{1}{2} \iota \Delta \theta H \Delta \theta.$$
 — (37)

This equation shows that

$$V = \langle \Delta \theta^t \Delta \theta \rangle \sim H^{-1}$$
, where $\langle \rangle$: expected value. ——(8)

The most basic method for an estimation is to move only one parameter with the other parameters fixed. Then, from equation (37), ΔY becomes

$$\Delta Y = \frac{1}{2} h_{ii} (\Delta \theta_i)^2$$
.

Therefore, the parameter which has a small diagonal component of H seems to be changeable. This is equivalent to saying that the parameter which has a large diagonal component of H^{-1} is changeable from equation \S .

Next, it is easy to consider the relationship among the parameters of the correlation matrix (R). R is obtained, as follows, from equation (R).

$$R = \left(\frac{h_{ij}^{-1}}{\sqrt{h_{ii}^{-1}h_{jj}^{-1}}}\right) = S_r H^{-1} S_r \qquad -69$$

$$H^{-1} = (h_{ij}^{-1}), \quad S_r = \left(\frac{1}{\sqrt{h_{11}^{-1}}} \frac{1}{\sqrt{h_{nn}^{-1}}}\right)$$

Next, consider the extreme points of the following L^2 when $\Delta Y =$ const.,

$$L^2 = t \Delta \theta \Delta \theta = \Delta \theta_1^2 + \cdots + \Delta \theta_n^2$$

This becomes

$$\Delta \theta = ke_i$$

$$H^{-1}e_i = \lambda_i e_i, \quad (He_i = \frac{1}{\lambda_i} e_i), \quad \text{where} \qquad {}^t e_i e_j = \begin{cases} 0 & (i \neq j) \\ 1 & (i = j) \end{cases}$$

Therefore, these are the eigenvalues and eigenvectors of H^{-1} . For these vectors, the approximate equation of ΔY becomes

$$\Delta Y = \frac{1}{2} \frac{k^2}{\lambda_i}.$$

For a test, the following equation was used (Draper and Smith 1966):

$$\frac{\Delta Y}{Y_0} = \frac{p}{m-p} F(p, m-p, 1-\alpha)$$

$$\begin{cases} m : \text{number of samples} \\ p : \text{number of parameters} \\ \alpha : \text{confidence level} \end{cases}$$

Equation (42) has the correct relationship for linear models; however, this is a non-linear model and equation (42) can only be used as an approximation.

Next, consider the influences on the scaling of the parameters. Using equation (23), equation (37) becomes

$$\Delta Y = \frac{1}{2} {}^{t} \Delta \theta S S^{-1} H S^{-1} S \Delta \theta = \frac{1}{2} {}^{t} \Delta \theta^* H^* \Delta \theta^*.$$

And equation (40) becomes

$$H^*e_i^*={}^tS^{-1}HS^{-1}Se_i={}^tS^{-1}\frac{1}{\lambda_i}e_i$$

$$H^*e_i^*={}^tS^{-1}S^{-1}\frac{1}{\lambda_i}e_i^*.$$

Therefore, e_i^* is not an eigenvector of H^* , since S is not an orthogonal matrix (${}^tS = S \neq S^{-1}$). This is easy to understand from the following rela-

tionship:

$$L^{2*}={}^{t}\Delta\boldsymbol{\theta}^{*}\Delta\boldsymbol{\theta}^{*}={}^{t}\Delta\boldsymbol{\theta}S^{2}\Delta\boldsymbol{\theta}=s_{1}^{2}\Delta\theta_{1}^{2}+\cdots\cdots+s_{n}^{2}\Delta\theta_{n}^{2}$$

In general matrix theory, the eigenvalue resolution is as follows:

$$P^{-1}AP = \begin{pmatrix} \lambda_1 \\ \lambda_n \end{pmatrix}$$
.

 \boldsymbol{A} and \boldsymbol{B} are "simillar" as defined by the relation

$$B=Q^{-1}AQ$$
.

It follows that

$$P^{-1}(QBQ^{-1})P = (Q^{-1}P)^{-1}B(Q^{-1}P) = \begin{pmatrix} \lambda_1 \\ \lambda_n \end{pmatrix}$$

Then, B has the same eigenvalues as A and its eigenvectors are

$$e_i *= Q^{-1}e_i$$
.

However, because ${}^tS \neq S^{-1}$, H^* and H are not "similar". Thus, such relationships do not exist between H^* and H.

From the above it can be seem that the choice of the scalling method is an important problem for the estimation of parameter errors on eigenvectors of H. In this paper, S_2 is chosen to be the same as that of Akamine (1985). It is therefore possible to treat parameter errors as a ratio of error to its own parameter length. In a practical calculation, first set the solution values of the parameters as the initial values for the program, then, run and stop at line 135. Finally, output values of HESSIAN (I, J). Because these values are $H_1^* = S_1^{-1} H S_1^{-1}$, the operation $H_2^* = S_2^{-1} S_1 H_1^* S_1 S_2^{-1}$ is necessary to obtain H_2^* . In practice, it is sufficient to calculate the expression as follows.

Next, consider the correlation matrix (\mathbf{R}) . It becomes as follows from equation (39):

$$R^* = S_r^* H^{*-1} S_r^*$$

$$H^{*-1} = (S^{-1}HS^{-1})^{-1} = SH^{-1}S$$

$$S_r^* = \left(\frac{1}{\sqrt{h_{11}^{*-1}}}\right) = \left(\frac{1}{s_1\sqrt{h_{11}^{-1}}}\right) \frac{1}{s_n\sqrt{h_{nn}^{-1}}}$$

Then it becomes

$$H^{-1}$$
 S
 H^{*-1}
 S_r
 S_r
 X_r
 X_r

$$S_r^* SS_r^{-1} = I$$
 $(S_r^* S = S_r)$

Obviously, this can be expressed as

$$R^*=R$$
.

Therefore, a correlation matrix is never affected by the scaling of parameters. This is obvious from the definition of the correlation coefficient.

The correlation matrix is regarded as the covariance matrix of the parameters standardized according to their standard deviation. However, S_r is regarded as one of the scalings of the parameters. If $H^{-1}(V)$ is a diagonal matrix then $S_1=S_r$. This means that parameters are independent of each other. Therefore, this relationship does not exsist in general.

One of the typical analysing method using eigenvalues and eigenvectors is the principal component analysis. In this method, the user chooses either a covariance matrix or a correlation matrix for his object. However, in general, it is better to choose a correlation matrix.

In this paper $H_2^{*-1}=S_2H^{-1}S_2$ is used. If a part of the solutions of parameters is near 0 (for example. $t_1=0$ or a=0), it is not sufficient since the part of errors (t_1, a) is evaluated too large. In general, though it is better to use a correlation matrix, there is another method that the user sets s_i for each parameter. In such cases, since the calculations are all the same, calculation details are omitted.

7. An example computation

(1) The data for computation

The artificial data in Table 1 were used for a test computation. This periodically oscillating data is set as $l_{\infty}=100$, K=0.5 and $t_0=0.5$.

i	li	l0i	σ_i	i	/ i	l0i	σ_i	i	t_i	l0i	σ_i
1	0.5	5	3	8	2.0	47	2	15	3.5	80	3
2	0.8	12	3	9	2.2	54	3	16	4.0	82	2
3	1.0	18	2	10	2.4	63	3	17	4.5	87	3
4	1.2	30	4	11	2.5	66	3	18	5.0	88	3
5	1.3	36	3	12	2.8	69	3	19	7.5	99	5
6	1.5	42	3	13	3.0	68	6	20	10.0	99	2
7	1.7	45	3	14	3.2	74	3				

Table 1. The artificial data for the test of Program $1 \sim 3$.

(2) Results of computations

The results of computations are given in Table 2. The graphs of the results were drawn using an XY-plotter (Fig. 1). A graph of a type-2 equation is omitted because it is the same as that of a type-1 equation and they are difficult to distinguish. This is because equation (32) exists, approximately, for $K \leq 2\pi$.

	Times of iterations	l∞	$K (K_1)^{(1)}$	<i>t</i> ₀	t_1	а	Y_0
Initial value	0	100	0.5	0.5	0.25	0.0	
type-0	3	100.916	0.478494	0.495538			19.9981
type-1	5	100.623	0.870266 (0.487011)	0.388283	0.229144	0.119223	3.93503
type-2	6	100.615	0.487133	0.388253	0.21616	0.119418	3.98904

Table 2. Results of the computation by Program 1~3 for the data in Table 1.

1) $K_1 = \frac{1+a}{2}K$

Fig. 1. Graphs of type-0 and type-1 for von Bertalanffy model in Table 2. (The periodically oscillating curve is type-1 and the other is type-0.)

The results of calculations for $\max l_i$, $\min l_i$ equation (31) are listed in Table 3 and Fig. 2. Also, in this case a graph of a typh-2 equation is omitted because it is the same as that of a type-1 equation. The values of t for extreme points of the growth rate are given in Table 4. These values are rather different, but they seem natural since the values of t_1 are even more different than the other parametes in Table 2.

Table 3. Min t_0 and max t_0 for each type.

	min to	t_0	max to	
type-1	0.368421	0.388283	0.618916	
type-2	0.367569	0.388253	0.617524	

Fig. 2. Graphs of type-1 and type-0 for min t_0 , t_0 and max t_0 in Table 3. (The upper curve is type-0 for min t_0 , the lower curve is type-0 for max t_0 , and the middle curves are type-0, 1 in Fig. 1.)

Table 4. Extreme points for each type.

	maximal point	t_1	minimal point		
type-1	0.180361	0.229144	0.729856		
type-2	0.188181	0.21616	0.71951		

Thus, it has been proved that the type-2 equation results in the same type curves as for the type-1 equation. Therefore, most of the following descriptions are according to type-1 only.

(3) Estimation of parameter errors

The results of an estimation of parameter errors are listed in Tables 5 and 6 and their graphs are given in Figs. 3 and 4. The eigenvectors of the type-1 equation show that a is the most changeable. This is because intervals of data are clearly too large (Fig. 4). Even von Bertalanffy model (type-0) may be sufficient for this data.

BASIC programs (Hauseholder transform, bisection method, Wielandt's inverse iteration) of 玄・井田(1983) were used to compute an inverse matrix and the eigenvalues and eigenvectors.

Table 5-a. Results of the calculation to estimate errors of each parameter (type-0).

		arameter (type o		
parameter	l_{∞}	K	t_0	$\lambda_i \times 10^3$ (%)
solution (s2)	100.916	0.478494	0.495538	!
<i>s</i> 1	1.02521	95.6023	39.4126	
$g_0 \times 10^4$	- 3.44588	- 2.8637	- 1.70757	
H* ₁	1	0.847855 1	- 0.512361 - 0.735915 1	
H*2	10704	4012.72 2092.62	- 1035.29 - 657.483 381.438	
$R*_2 \setminus V*_2$ 1)	0.367830	- 0.854352	- 0.474288	
	81	3.02680	2.89841	
	31	.66	6.33034	
e_1	0.108342	- 0.506386	- 0.855474	8.10607 (83.35)
e_2	0.363887	- 0.780615	0.508160	1.53827 (15.82)
e_3	- 0.925160	- 0.366357	- 0.099309	0.08060 (0.83)

¹⁾ $V*_2 = H*_2 -1$

Table 5-b.	Results of	the calculation	to	estimate	errors	of	each
	parameter	(type-1).					

parameter	l∞	K	t_0	t_1	a	$\lambda_i \times 10^3$ (%)	
solution (s2)	100.623	0.870266	0.388283	0.229144	0.119223		
<i>s</i> ₁	1.02897	52.0887	56.9683	24.8581	48.9777		
$g_0 \times 10^4$	-4.92649	-3.23386	3.35114	-0.96926	-5.43809		
H* 1	1	0.847876 1	-0.506777 -0.734091 1	$\begin{array}{c} 0.278961 \\ 0.405565 \\ -0.681135 \\ 1 \end{array}$	0.802523 0.975324 -0.815085 0.474802		
H* 2	10720.1	3979.49 2054.9	$\begin{array}{c} -1160.64 \\ -736.084 \\ 489.287 \end{array}$	164.52 104.721 -85.8206 32.4454	$\begin{array}{c} 485.195 \\ 258.168 \\ -105.279 \\ 15.7924 \\ 34.097 \end{array}$		
$R*_2 \backslash V*_2 1)$	0.372833 37 26 09 01	-0.8737 14.9671 .26 .06 89	-0.5341 3.3636 11.5398 .52 .56	-0.4108 1.7924 13.7500 60.1433 $.03$	$\begin{array}{c} -0.15 \\ -112.11 \\ 62.33 \\ 6.87 \\ 1069.54 \end{array}$		
e_1	-0.000083	-0.104191	0.058067	0.007254	0.992834	1083.51 (93.81)	
e_2	0.009028	-0.054637	-0.235281	-0.970231	0.015118	63.4753 (5.50)	
e_3	0.134000	-0.586609	-0.767557	0.220129	-0.018265	6.6023 (0.57)	
e_4	-0.358517	-0.714410	-0.582644	0.099412	0.108291	$ \begin{array}{c} 1.4048 \\ (0.12) \end{array} $	
\boldsymbol{e}_5	0.923814	0.362865	-0.112477	0.016133	0.044554	$0.0803 \\ (0.00)$	

¹⁾ $V*_2 = H*_2-1$

Table 6-a The approximate value of $\Delta Y^{(1)}$ to estimate the confidence interval.

			., - ,	*	10	$\Delta Y^{(1)}$
type0	3	20	5	3.197	19.9981	11.28
			1	5.185		18.30
type-1	5	20	5	2.901	3.93503	3.805
			1	4.556		5.976

¹⁾ $\frac{\Delta Y}{Y_0} = \frac{p}{m-p} F(p, m-p, 1-\alpha)$

	k1)	l _∞	K	t_0	t_1	а	△ Y2)
	-0.33	97.308	0.558454	0.635432			17.70
	-0.27	97.964	0.543916	0.609996			11.24
type-0	0.00	100.916	0.478494	0.495538			0.00
	0.30	104.196	0.405803	0.368362			10.86
	0.38	105.071	0.386419	0.334449			17.95
	-1.7	100.637	1.02441	0.349954	0.226318	-0.082004	5.842
	-1.4	100.635	0.997209	0.356718	0.226817	-0.046493	3.353
type-1	0.0	100.623	0.870266	0.388283	0.229144	0.119223	0.000
	1.6	100.610	0.725188	0.424357	0.231804	0.308613	3.446
	1.9	100.607	0.697986	0.431121	0.232302	0.344124	5.764

Table 6-b. The confidence interval of each parameter on e_1 in Table 5.

²⁾ $\Delta Y = Y(\theta_0 + \Delta \theta) - Y(\theta_0)$

Fig. 3. Graphs of type-0 in Table 6-b. (The steepest curve is that for k=-0.33, the most gentle curve is that for k=0.38, and the middle curve is that for k=0.00.)

¹⁾ $\Delta\theta = ke_1$

Fig. 4. Graphs of type-1 in Table 6-b. (The most oscillating curve is that for k=-1.7, the most gentle curve is that for k=1.9, and the middle curve is that for k=0.0.)

(4) Comparision with Walford's graph

Results obtained by using Walford's graph are compared. Walford's graph is described as follows from equation(2):

$$l_{t+1}=al_t+l_{\infty}(1-a)$$
, where $a=\exp(-K)$ —43
and $t_0=t+\frac{1}{K}\ln(1-\frac{l_t}{l_{\infty}})$.

K and l_{∞} are calculated using the regression line of equation (43), and t_0 is calculated for each t by equation (44). Results are given in Table 7 and Figs. 5 and 6. This method is practical enough for this data, since it is within a 99% confidence interval for Tables 5 and 6. However, it is regrettable that this method cannot use anything except regular intervallic data and, therefore, cannot draw enough information from the data in Fig. 6.

Table 7.	The	data	and	results	of	Walford's	graph.
----------	-----	------	-----	---------	----	-----------	--------

t_i	loi	l0i+1	<i>t</i> ₀ 1)
1.0	18	47	.556
2.0	47	68	.595
3.0	68	82	.521
4.0	82	88	.371
5.0	(88)		.627

$$y=.652x+36.2$$
 $\overline{t_0}=.534$ $dY=18.0441$ $(Y_0=38.0422)$

1)
$$t_0 = t_i + \frac{1}{K} \ln(1 - \frac{l_{0i}}{l_{\infty}})$$

Fig. 5. Walford's graph for the data in Table 7.

Fig. 6. Graphs of type-0 in Table 2 and Table 7. (Only black circles are used for Walford's graph.)

(5) The computing time

These programs were developed while aiming at an easily understood algorithm and an ability to use it with other curves. Thus, the computing efficiency could not to be so good. For example, all expressions are computed by a DEFFN statement. Then, the same computation is performed many times. In the case of using PC-9801F (NEC), each program required less than 5 minutes. Therefore, these are sufficient for practical use. When using a slow computer, it is better to impose the computations of all expressions into the main program, just like Akamine(1985).

The number of iterations seems to be larger in the case of bad initial values or a high precision computer. Also, it is natural that the computing time becomes longer in the case of a large data entry.

III. Expansion of logistic and GOMPERTZ models

1. Expansion of logistic model

This expansion is the same as that for von Bertalanffy model. The differential equation of this model is

$$\frac{dl}{dt} = al(l_{\infty} - l)$$
 .

The integral of equation (45) with the initial condition, when $t=t_0$ let $l=l_{\infty}/2$, is

$$l = \frac{l_{\infty}}{1 + \exp h_0}$$
 — (46)

This is a "type-0" equation. The differential of equation (46) is

$$\frac{dl}{dt} = \frac{a^* \exp h_0}{\{1 + \exp h_0\}^2} . \tag{47}$$

The "type-l" model for the growth rate is

$$\frac{dl}{dt} = al(l_{\infty} - l)f(t) . \tag{48}$$

The integral of equation (48) is

$$l = \frac{l_{\infty}}{1 + \exp h_1} . \tag{49}$$

From equation (46), the above can be transformed as

$$\frac{1}{l} = \frac{1}{l_{\infty}} (1 + \exp h_0) \ , \quad \frac{d}{dt} (\frac{1}{l}) = a^+ \exp h_0 \quad \text{where} \quad a^+ = -\frac{K}{l_{\infty}} \ .$$

Then, the "type-2" model for the growth rate is

$$\frac{d}{dt}(\frac{1}{I}) = a^{+}(\exp h_0)f(t) . \tag{50}$$

The integral of equation (50) is;

$$l = \frac{l_{\infty}}{1 + \exp h_2} . \tag{5}$$

It seems that the type-2 expansion is not so natural as that of type-1.

The partial differential of each parameter is as follows:

$$\frac{\partial l}{\partial l_{\infty}} = \frac{1}{1 + \exp h_{i}} - \frac{1}{1 + \exp h_{i}}$$

$$\theta = K, \ t_{0}, \ t_{1}, \ a$$

$$\frac{\partial l}{\partial \theta} = -l_{\infty} \frac{\exp h_{i}}{(1 + \exp h_{i})^{2}} \frac{\partial h_{i}}{\partial \theta}$$

The extreme points of the growth rate are

$$h'_{i}^{2}(1-\exp h_{i})+h'_{i}'(1+\exp h_{i})=0$$
. ——53

In a type-l equation, it is

$$Kf^{2}(1-\exp h_{1})-f'(1+\exp h_{1})=0$$
. ——54

2. Expansion of Gompertz model

This expansion is also the same as that of the former models. The differential equation of this model is

$$\frac{dl}{dt} = al(\ln l_{\infty} - \ln l) . \tag{5}$$

The integral of equation (5) with the initial condition, when $t=t_0$ let $l=l_{\infty}/e$, is

$$l=l_{\infty}\exp(-\exp h_0)$$
.

This is a "type-0" equation. The differential of equation 50 is

$$\frac{dl}{dt} = a^* \exp(-\exp h_0) \exp h_0 . \qquad ---57$$

The "type-l" model for the growth rate is

$$\frac{dl}{dt} = al(\ln l_{\infty} - \ln l)f(t) .$$

The integral of equation 58 is

$$l=l_{\infty}\exp(-\exp h_1)$$
. —59

From equation 66, the above can be transformed as

$$\ln l = \ln l_{\infty} - \exp h_0$$
, $\frac{d(\ln l)}{dt} = \frac{1}{l} \frac{dl}{dt} = a^0 \exp h_0$ where $a^0 = K$

Then, the "type-2" model for the growth rate is

$$\frac{d(\ln l)}{dt} = a^{\circ}(\exp h_0)f(t) . \tag{60}$$

The integral of equation (60) is

$$l=l_{\infty}\exp(-\exp h_2)$$
. —61)

It also seems that the type-2 expansion is not so natural as that of type-1.

The partial differential of each parameter is as follows:

$$\frac{\partial l}{\partial l_{\infty}} = \exp(-\exp h_i) \qquad --62$$

$$\theta = K$$
, t_0 , t_1 , a

$$\frac{\partial l}{\partial \theta} = -l_{\infty} \exp(-\exp h_i) \exp h_i \frac{\partial h_i}{\partial \theta}$$

The extreme points of growth rate are

$$h'_{i}^{2}(1-\exp h_{i})+h'_{i}'=0$$
. —63

In a type-l equation, it is

$$Kf^{2}(1-\exp h_{1})-f'=0$$
.

3. Programs and results

Program 4 and 5 are the parts of logistic and Gompertz model programs different from von Bertalanffy model program. These programs were tested using artificial data. These data are listed in Tables 8 and 9 and the results of the computations are given in Table 10 and Figs. 7 and 8. Computations for type-2 and other calculations has been omitted.

Table 8.	The	artificial	data	for	the	test	of	program	4.
----------	-----	------------	------	-----	-----	------	----	---------	----

i	$t_{\it i}$	l0i	σ_i	i	ti	l0i	σ_i	i	ti	l0i	σ_i
1	- 4.0	1	2	10	- 0.7	38	4	19	2.0	87	3
2	- 3.5	3	2	11	- 0.3	39	5	20	2.3	92	4
3	- 3.0	4	3	12	0.0	48	4	21	2.8	93	3
4	- 2 . 8	7	3	13	0.3	61	4	22	3.0	96	3
5	- 2.4	7	3	14	0.6	62	4	23	3.5	97	2
6	- 2.0	13	4	15	0.8	66	5	24	4.0	98	3
7	-1.7	17	3	16	1.0	75	4	25	5.0	99	3
8	- 1.4	18	3	17	1.3	81	3				
9	- 1.0	25	4	18	1.7	82	3 .				

Fig. 7. Graphs of type-0 and type-1 for logistic model in Table 10. (The periodically oscillating curve is type-1 and the other is type-0.)

Table 0	The artificial	data for	the	test of	program	5
Table 9.	THE ALLIHUTAL	uata 101	LIIC	test or	program	υ.

i	t_i	l_{0i}	σ_i	i	t_i	l0i	σ_i	i	t_i	l0i	σ_i
1	- 1.3	1	3	8	0.2	50	2	15	2.0	88	2
2	- 1.0	8	3	9	0.4	55	3	16	2.3	92	3
3	- 0.8	16	2	10	0.7	56	5	17	2.7	92	3
4	- 0.5	19	3	11	1.0	67	3	18	3.0	94	3
5	- 0.3	24	3	12	1.2	77	3	19	4.0	98	2
6	- 0.1	29	4	13	1.5	81	2	20	5.0	98	3
7	0.0	40	4	14	1.8	82	3				

Table 10. Reaults of computation by program 4, 5 for the data in Table 8, 9.

		Times of iterations	l.co	K	t_0	t_1	a	Y_0
	Initial value	0	100	1.0	0.0	0.0	0.0	
logistic	type-0	5	99.7154	1.00196	-0.003079			7.28418
logistic	type-1	7	99.7416	2.13245	0.010413	0.014517	-0.050024	1.27517
Gompertz	type-0	4	99.1726	0.993326	-0.080152			17.8405
COMPERIZ	type-1	9	99.7023	1.94285	-0.014149	0.006776	0.015631	0 . 9 8 6610

MODEL G

Fig. 8. Graphs of type-0 and type-1 for Gompertz model in Table 10. (The periodically oscillating curve is type-1 and the other is type-0.)

IV. Conclusion

Two expansions, type-1 and type-2 were considered for each growth model. Type-2 converged for the same curves as type-1. Type-1 is easier to expand and treat than type-2. Thus, it is sufficient to use only type-1 as the expansion model.

Although it is possible to use a more complex expression for f, it becomes more difficult to treat for programing and to understand the relationship of each parameter. This expansion model seems sufficient for expressing the growth characteristics using only a few parameters.

Though these programs are not very good regarding computing efficiency, they are sufficiently practical and make it easy to understand algorithm and to apply them to other curves.

Acknowledgements

The author is indebted to Mr. Fumihiko Kato of the Seikai Regional Fisheries Research Laboratory and Mr. Kiyohide Ishioka of the Nansei Regional Fisheries Research Laboratory for their kind advice and help. The author is also greatful to Dr. Akihiko Shirota and Mr. Kunizo Tanaka of the Japan Sea Regional Fisheries Research Laboratory for their critical readings of the manuscript. The author would also like to thank Miss Yasuko Ito for drawing the figures using an XY-plotter.

```
10
       REM
20
       REM
              BERTALANFFY - MARQUARDT
       REM
30
100
       REM MAIN ROUTINE
       GOSUB *VARIDEF
110
120
       GOSUB *DATAREAD
       GOSUB *INITIAL
130
140
       FOR IREP=1 TO NIT
150
          GOSUB *SUMUP
160
          GOSUB *CALEQAT
170
       NEXT IREP
180
       PRINT "ITERATION WAS COMPLETED."
190
       PRINT
200
       IREP=IREP-1
210
       GOSUB *PRINTOUT
220
       END
300
      *PEND2
       PRINT "CONVERGENCE WAS COMPLETED."
310
320
       PRINT
330
       IREP=IREP-1
340
       GOSUB *PRINTOUT
350
       END
1000
       *VARIDEF
1010
        DEFINT I-N
1100
        NP=3
1110
        DEF FNEP1=EXP(-P2(2)*(TIME(K)-P2(3)))
1120
        DEF FNDP1=1-FNEP1
1130
        DEF FNBL =P2(1)*FNDP1
        DEF FNDP2=P2(1)*FNEP1*(TIME(K)-P2(3))
1140
1150
        DEF FNDP3=P2(1)*FNEP1*(-P2(2))
1800
        DEF FND1 = (BLENGTH(K)-FNBL)/SIGMA(K)
        DEF FND2 =FND1*FND1
1810
1820
        DIM P(NP), P2(NP), PDELTA(NP)
1830
        DIM DIFFER(NP), SCALE(NP), HESSIAN(NP, NP), GVECTOR(NP)
        RETURN
1840
2000
      *DATAREAD
2010
       READ NIT, CLAMBDA, CNU
       PRINT "NUMBER OF ITERATION ="; NIT
2020
       PRINT "
                                     =";CLAMBDA
2030
                     LAMBDA
                                     ="; CNU
       PRINT "
2040
                       NIJ
2050
       PRINT
2060
       READ N
       PRINT "NUMBER OF DATA ="; N
2070
2080
       PRINT
2090
       DIM BLENGTH(N), TIME(N), SIGMA(N)
2100
       FOR I=1 TO N
2110
          READ TIME(I),BLENGTH(I),SIGMA(I)
          PRINT "I=";I
2120
          PRINT "
                                =";TIME(I)
2130
                         TIME
                         LENGTH ="; BLENGTH(I)
          PRINT "
2140
          PRINT "
                         SIGMA =";SIGMA(I)
2150
2160
          PRINT
2170
       NEXT I
2180
       RETURN
```

Program 1-a. The BASIC program for von Bertalanffy model (type-0) by Marquardt's method. (DATA: The example of the artificial data in Table 1).

```
3000
     *INITIAL
       FOR I=1 TO NP
3010
         READ P(I): P2(I)=P(I)
3020
     NEXT I
3030
      STOP
3035
3040
      GOSUB *CALD2
3050
      Y1 = Y2
     IREP=0 : YDELTA=0
3060
3070
     GOSUB *PRINTOUT
3080
     RETURN
4000 *SUMUP
4010 FOR I=1 TO NP
         GVECTOR (I) = 0
4020
4030
         FOR J=I TO NP
4040
         HESSIAN(I,J)=0
     NEXT J : NEXT I
4050
4060
      REM
4070
      FOR K=1 TO N
4080
         DIFFER(1)=FNDP1
          DIFFER(2)=FNDP2
4090
         DIFFER(3)=FNDP3
4100
         D1=FND1 : SS1=SIGMA(K) : SS2=SS1*SS1
4110
         FOR I=1 TO NP
4120
             GVECTOR(I)=GVECTOR(I)+D1*DIFFER(I)/SS1
4130
4140
             FOR J=I TO NP
4150
                HESSIAN(I,J) = HESSIAN(I,J) + DIFFER(I) * DIFFER(J) / SS2
4160
     NEXT J : NEXT I : NEXT K
4170 REM SCALING
4180 FOR I=1 TO NP
4190
          SCALE(I)=SQR(HESSIAN(I,I))
4200
     NEXT I
4210
     FOR I=1 TO NP
4220
          GVECTOR(I)=GVECTOR(I)/SCALE(I)
4230
         FOR J=I TO NP
4240
             HESSIAN(I,J)=HESSIAN(I,J)/SCALE(I)/SCALE(J)
4250
      NEXT J : NEXT I
4260
      REM
4270
      FOR I=2 TO NP
4280
         HESSIAN(I,1) = GVECTOR(I)
     NEXT I
4290
4300 FOR I=2 TO NP-1
4310
         FOR J=I+1 TO NP
4320
            HESSIAN(J,I) = HESSIAN(I,J)
4330 NEXT J: NEXT I
4340
     RETURN
5000 *CALEQAT
5010
     K2=0
5020 *REPEAT
5030
     K2 = K2 + 1
      IF K2>11 GOTO *PEND2
5040
      PRINT "K=";K2
5050
5060
      PRINT "
                   LAMBDA =";CLAMBDA
5070
      PRINT
5080
     FOR I=1 TO NP
5090
         HESSIAN(I,I)=1+CLAMBDA
5100
      NEXT I
```

Program 1-b. Continued.

```
5110
       GOSUB *GAUSS
5120
       REM SCALING
5130
       FOR I=1 TO NP
5140
          PDELTA(I)=PDELTA(I)/SCALE(I)
5150
          P2(I)=P(I)+PDELTA(I)
5160
       NEXT I
5170
       REM
5180
       GOSUB *CALD2
5190
       IF Y2>=Y1 GOTO *PREREP
5200
       REM
       CLAMBDA=CLAMBDA/CNU
5210
5220
       YDELTA=Y2-Y1
5230
       Y1=Y2
       FOR I=1 TO NP
5240
          P(I)=P2(I)
5250
5260
       NEXT I
       GOSUB *PRINTOUT
5270
5280
       RETURN
5500
      *PREREP
5510
       CLAMBDA=CLAMBDA*CNU
       FOR I=2 TO NP
5520
5530
          GVECTOR(I)=HESSIAN(I,1)
5540
       NEXT I
       FOR I=2 TO NP-1
5550
          FOR J=I+1 TO NP
5560
5570
              HESSIAN(I,J) = HESSIAN(J,I)
5580
       NEXT J : NEXT I
       GOTO *REPEAT
5590
6000
      *CALD2
       Y2 = 0
6010
6020
       FOR K=1 TO N
          Y2=Y2+FND2
6030
6040
       NEXT K
6050
       RETURN
7000
      *GAUSS
7010
       REM
7020
       FOR I=1 TO NP-1
          FOR K=I+1 TO NP
7030
7040
              Q1=HESSIAN(I,K)/HESSIAN(I,I)
              GVECTOR (K) = GVECTOR(K) - Q1 * GVECTOR(I)
7050
7060
              FOR J=K TO NP
7070
                 HESSIAN(K,J) = HESSIAN(K,J) - Q1 * HESSIAN(I,J)
7080
       NEXT J : NEXT K : NEXT I
7090
       REM
7100
       PDELTA(NP)=GVECTOR(NP)/HESSIAN(NP,NP)
7110
       FOR I=NP-1 TO 1 STEP -1
          T1 = GVECTOR (I)
7120
7130
          FOR J=I+1 TO NP
7140
              T1=T1-PDELTA(J)*HESSIAN(I,J)
          NEXT J
7150
7160
          PDELTA(I)=T1/HESSIAN(I,I)
7170
       NEXT I
7180
       RETURN
```

Progam 1-c. Continued.

```
*PRINTOUT
8000
       PRINT "IREP="; IREP
8010
                                    =";Y1
       PRINT "
8020
                                    =";YDELTA
       PRINT "
8030
                         DELTA-D2
       PRINT "
                       L-INFINITY = "; P(1)
8040
       PRINT "
                                   =";P(2)
8050
                           K
       PRINT "
                                   =";P(3)
                           T0
8060
8070
       PRINT
       RETURN
8080
10000
       DATA 50,0.01,2
10010
       DATA 20
10020
       DATA 0.5, 5,3,0.8,12,3,1.0,18,2,1.2,30,4,1.3,36,3
10030
       DATA 1.5,42,3,1.7,45,3,2.0,47,2,2.2,54,3,2.4,63,3
10040
       DATA 2.5,66,3,2.8,69,3,3.0,68,6,3.2,74,3,3.5,80,3
10050
       DATA 4.0,82,2,4.5,87,3,5.0,88,3,7.5,99,5,10.0,99,2
10060
       DATA 100,0.5,0.5
```

Program 1-d. Continued.

```
1020
        PAI=3.14159265#
1100
        NP=5
        DEF FNDP1=1-FNEP1
1120
1130
        DEF FNBL =P2(1)*FNDP1
        DEF FNDP2=FNEP2*(FNFT1(TIME(K))-FNFT1(P2(3)))
1140
        DEF FNDP3=-FNEP3*FNFT3(P2(3))
1150
        DEF FNDP4=FNEP3*(FNFT4(TIME(K))-FNFT4(P2(3)))
1160
        DEF FNDP5=FNEP3*(FNFT5(TIME(K))-FNFT5(P2(3)))
1170
               FNFT1(TM) = FNP51*TM+FNP52/2/PAI*SIN(FNTM1(TM))
1180
        DEF
               FNFT3(TM) = FNP51 + FNP52 * COS(FNTM1(TM))
1190
        DEF
               FNFT4(TM) = -FNP52*COS(FNTM1(TM))
1200
        DEF
1210
        DEF
               FNFT5(TM) = TM/2 - 1/4/PAI*SIN(FNTM1(TM))
                 FNEP1 = EXP(-P2(2)*(FNFT1(TIME(K))-FNFT1(P2(3))))
1220
        DEF
1230
        DEF
                 FNEP2=P2(1)*FNEP1
1240
        DEF
                 FNEP3=P2(2)*FNEP2
                   FNP51 = (1+P2(5))/2
1250
        DEF
1260
        DEF
                   FNP52 = (1-P2(5))/2
                   FNTM1 (TM) = 2*PAI* (TM-P2 (4))
1270
        DEF
4103
          DIFFER (4)=FNDP4
          DIFFER(5)=FNDP5
4105
       PRINT "
                                    =";P(4)
8064
                            T1
       PRINT "
                                    =";P(5)
8067
10060
       DATA 100,0.5,0.5,0.25,0
```

Program 2. The different parts of the program for von Bertalanffy model (type-1) from Program 1.

```
1100
        NP=5
1120
        DEF FNDP1=1-FNEP2
1130
        DEF FNBL =P2(1)*FNDP1
        DEF FNDP2=FNEP3*(-(TIME(K)-P2(3))+FNGT6(TIME(K))-FNGT6(P2(3)))
1140
        DEF FNDP3=FNEP3*(P2(2)+FNGT7(P2(3)))
1150
        DEF FNDP4=FNEP3*(FNGT7(TIME(K))-FNGT7(P2(3)))
1160
         DEF FNDP5=FNEP3*(FNGT9(TIME(K))-FNGT9(P2(3)))
1170
1180
        DEF
               FNGT1(TM) = FNP51 + FNP52 + FNCO1 + (P2(2) + FNCO2(TM) - 2 + PAI + FNSI2(TM))
               FNGT2(TM)=FNP52*2*PAI/FNCK1/FNCK1*(4*PAI*P2(2)*FNCO2(TM)+FNCK2*FNS
1190
        DEF
I2(TM))
        DEF
               FNGT3(TM) = FNP52*FNCO1*(P2(2)*2*PAI*FNSI2(TM)+4*PAI*PAI*FNCO2(TM))
1200
               FNGT5(TM) = 1/2 - 1/2 + FNCO1 + (P2(2) + FNCO2(TM) - 2 + PAI + FNSI2(TM))
1210
        DEF
1220
        DEF
                 FNEP1 = EXP(-P2(2)*(TIME(K)-P2(3)))
                 FNEP2=FNGT1(TIME(K))/FNGT1(P2(3))*FNEP1
1230
        DEF
1240
        DEF
                 FNEP3 = -P2(1)*FNEP2
                   FNP51 = (1+P2(5))/2
1250
        DEF
                   FNP52=(1-P2(5))/2
        DEF
1260
1270
        DEF
                   FNTM1(TM) = 2*PAI*(TM-P2(4))
1280
        DEF
                    FNCO1 = P2(2)/FNCK1
1290
        DEF
                    FNCO2 (TM) = COS (FNTM1 (TM))
1300
        DEF
                    FNSI2(TM)=SIN(FNTM1(TM))
                      FNGT6 (TM) = FNGT2 (TM) / FNGT1 (TM)
        DEF
1310
1320
        DEF
                      FNGT7(TM) = FNGT3(TM)/FNGT1(TM)
1330
        DEF
                      FNGT9(TM) = FNGT5(TM)/FNGT1(TM)
                        FNCK1 = P2(2)*P2(2)+4*PAI*PAI
1340
        DEF
                        FNCK2=P2(2)*P2(2)-4*PAI*PAI
1350
        DEF
```

Program 3. The different parts of the program for von Bertalanffy model (type-2) from Program 2.

```
DEF FNDP1=1/(1+FNEP1)
1120
        DEF FNDP2=P2(1)*FNEP1*(TIME(K)-P2(3))*FNDP1*FNDP1
1140
        DEF FNDP3=P2(1)*FNEP1*(-P2(2))*FNDP1*FNDP1
1150
       DATA 25
10010
       DATA -4,1,2,-3.5,3,2,-3,4,3,-2.8,7,3,-2.4,7,3
10020
       DATA -2,13,4,-1.7,17,3,-1.4,18,3,-1,25,4,-.7,38,4
10030
       DATA -.3,39,5,0,48,4,.3,61,4,.6,62,4,.8,66,5
10040
       DATA 1,75,4,1.3,81,3,1.7,82,3,2,87,3,2.3,92,4
10050
       DATA 2.8,93,3,3,96,3,3.5,97,2,4,98,3,5,99,3
10060
       DATA 100,1,0
10070
```

Program 4-a. The different parts of the program for logistic model (type-0) from Program 1. (DATA: The example of the artificial data in Table 8).

```
1120 DEF FNDP1=1/(1+FNEP1)

1140 DEF FNDP2=FNEP2*(FNFT1(TIME(K))-FNFT1(P2(3)))*FNDP1*FNDP1
1150 DEF FNDP3=-FNEP3*FNFT3(P2(3))*FNDP1*FNDP1
1160 DEF FNDP4=FNEP3*(FNFT4(TIME(K))-FNFT4(P2(3)))*FNDP1*FNDP1
1170 DEF FNDP5=FNEP3*(FNFT5(TIME(K))-FNFT5(P2(3)))*FNDP1*FNDP1

10070 DATA 100,1,0,0,0
```

Program 4-b. The different parts of the program for logistic model (type-1) from Program 2. (DATA is omitted: same as Program 4-a).

```
1120
        DEF FNDP1=EXP(-FNEP1)
1140
        DEF FNDP2=P2(1)*FNEP1*(TIME(K)-P2(3))*FNDP1
1150
        DEF FNDP3=P2(1)*FNEP1*(-P2(2))*FNDP1
      DATA 20
10010
10020
       DATA -1.3,1,3,-1,8,3,-.8,16,2,-.5,19,3,-.3,24,3
       DATA -.1,29,4,0,40,4,.2,50,2,.4,55,3,.7,56,5
10030
10040
       DATA 1,67,3,1.2,77,3,1.5,81,2,1.8,82,3,2,88,2
       DATA 2.3,92,3,2.7,92,3,3,94,3,4,98,2,5,98,3
10050
10060
      DATA 100,1,0
```

Program 5-a. The different parts of the program fon Gompertz model (type-0) from Program 1. (DATA: The example of the artificial data in Table 9).

```
1120 DEF FNDP1=EXP(-FNEP1)

1140 DEF FNDP2=FNEP2*(FNFT1(TIME(K))-FNFT1(P2(3)))*FNDP1

1150 DEF FNDP3=-FNEP3*FNFT3(P2(3))*FNDP1

1160 DEF FNDP4=FNEP3*(FNFT4(TIME(K))-FNFT4(P2(3)))*FNDP1

1170 DEF FNDP5=FNEP3*(FNFT5(TIME(K))-FNFT5(P2(3)))*FNDP1

10060 DATA 100,1,0,0,0
```

Program 5-b. The different parts of the program for Gompertz model (type-1) from Program 2. (DATA is omitted: same as Program 5-a).

Correspondence of variables

NIT : Number of iterations

CLAMBDA : λ CNU : ν

N : Number of data

: **△**Y

TIME(I) : t_i BLENGTH(I) : l_{0i} SIGMA(I) : σ_i

NP : Number of parameters

: θ old P(I): **θ**new P2(I) PDELTA(I) ⊿θ ∂l DIFFER(I) ลค SCALE(I) : S_1 HESSIAN(I, J): HGVECTOR(I) : g Y1: Yold : Ynew Y2

YDELTA

References

- AKAMINE, T. (1984) The BASIC program to analyse the polymodal frequency distribution into normal distributions with Marquardt's method. Bull. Jap. Sea Reg. Fish. Res. Lab., (34), 53-60.
- Conway, G.R., N.R.Glass and J.C.Wilcox (1970) Fitting nonlinear models to biological data by Marquard's algorithm. Ecology, 51(3), 503-507.
- Draper, N.R. and H.Smith (1966) Applied regression analysis, John Wiley and Sons, New York.
- 玄光男・井田憲一 (1983) パソコン会話型科学技術計算プログラム集. 工学図書株式会社, 東京, 163 pp.
- MARQUARDT, D.W. (1963) An algorithm for least-squares estimation of non-linear parameters. J. Soc. Indust. Appl. Math., 11(2), 431-441.
- Pauly, D. and N. David (1981) ELEFAN I, a BASIC program for the objective extraction of growth parameters from length-frequency data. Meeresforsch, (28), 205-211.
- PITCHER, T.J. and P.D.M. MACDONALD (1973) Two models for seasonal growth in fishes. J. Appl. Ecol., (10), 599-606.

周期関数による成長曲線の拡張と MARQUARDT 法による BASIC プログラム

赤嶺 達郎

周期関数: f(t+1)=f(t) を用いて von Bertalanffy, logistic, Gompertz 曲線の拡張を行なった。 $h_1=-K\{F(t)-F(t_0)\}$, F'=f, $f=(1+a)/2+(1-a)/2\cdot\cos 2\pi(t-t_0)$: $a\leq f\leq 1$ のときそれぞれ $l=l_{\infty}(1-\exp h_1)$, $l=l_{\infty}/(1+\exp h_1)$, $l=l_{\infty}\exp(-\exp h_1)$ を得た。

各モデルの BASIC プログラムを赤嶺 (1985) に従がい MARQUARDT 法にて作成した。また別タイプへの拡張,パラメータの誤差解析,本来のモデルや WALFORD の定差図法との比較,成長率が極値をとるときについても考察した。この拡張は有効であり,プログラムは他の曲線へ容易に応用できる。