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Expansion of Growth Curves Using a Periodic Function
and BASIC Programs by MARQUARDT's Method

TaTsuro AKAMINED

Abstract

The growth curves of von BerTaLanrry, logistic and GomperTz models werc
cxpanded using a periodic function, f (¢+1) =/ (¢). Each model was expanded into
{=leww(1—exph1), [=lw/(I1+exphl) and [=/wexp(—exphl) where h=—-K{F()—F(t0)},
F'=f, f=(14+a)/2+(1—a)/2-cos 2z ({—11) : aL fL]1.

BASIC programs for each model were written by Marquarpt’s method according
to AkamiNe (1985). The following subjects were also considered : an expansion into
another type, a parameter-error analysis, a comparison with the original model and
with WaLrorp’s graphical method, and a calculation to determine the extreme points
of the growth rate. This expansion of the growth curves is useful and the programs

are casily applied to other curves.

I. Introduction

For displaying growth curves, voN BERTALANFFY, logistic and GOMPERTZ
models are widely used. However, it is often difficult to use such curves
for data obtained from short intervals since the growth rates of aquatic
organisms are periodically affected by such variables as water temperature.
Data is not used effectively because WaLForp’s graphical method is mainly
used for calculations.

Prrcuer and MacponaLd (1973) and Paury and Davip (1981) had already
expanded growth curves. But these have not been widely used bhecause
related methods of calculation were not very useful. On the other hand,
Conway ef al (1970) had already used MarqQuarpT’s method for a logistic
model, a FORTRAN program for large computers (only).

This paper has been written to allow its application to any type of
growth curve. Two types of expansions using periodic functions are
considered. The BASIC programs of Marquarpt’s method were modified
according to AkamiNE (1985) and tested using artificial data.
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II. Expansion of VON BERTALANFFY model

1. Modeling of a growth curve
The differential equation of voN BErRTALANFFY model is

Z—;=a(lm—l), where a=const. —)

The integral of equation (1) with an initial condition, when #=#¢ let /=0, is
I=[.(1—exphp), where ho=—K({ —1t0). —(2)

This is a “type-0” equation. The differential of equation (2) is
%{=a*expho, where a*=Kl.. —(8)

From equations 1) and (8), if the growth rate changes periodically
along with the water temperature, there are two types of models:

Y ale=D S —@
and
dl__ « p
g =" (exp 20) f () —)
The period of the water temperature is 1, as follows:
Sa+L=r@® —(6)

Let equation @) be a “type-1” equation and equation (5) be a “type-2”
equation. First, consider the type-l1 equation. The integral of quation @

with the same initial condition as the type-0 equation is

I=[.,(1—exphi), where I=—K{F(t)—F(t0)} —)
and r={rat. —@)

The differential of equation () is
A —a*(exphf D). —

Next, consider the type-2 equation. The integral of equation (8 with
the same initial condition as the type-0 equation is

I=lc, {l—gg%expho} =1l (1—exphy), where —(0)
ho=ho+1InG()—1In G(¢)
and Gexp ho= ffexp hodt. —(1)

A comparison between equation (9) and equation (5) makes it easy to
understand the difference between type-l and type-2 equations.

Now, let’s consider G. Equation (1) becomes

G'+Gho=fly, where Wo=—K, [f(+1)=f({)

and G'(+1)-GH)=K{GUt+1)—-G()}.
Then,

G(+1)—G{)=Cexp(Kt) (C=const.=0). —{12
G(n) can be written as,

—c eXp(Kn)—1
G(n)=C expK—1 +G(0).
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A particular solution of equation @) is,
G(t)=aexp(Kt)+Db,
and its general solution of equation @) is,
G(t)=aexp(Kt)+b+ g (¢), where g(+1)=g (). —9
The first term on the right side of equation @8 is the constant term
Gexphy, considered to be an integral constant. Therefore, it is natural to
let G be
Ga+1D=G@). —(9
2. The practical model
Many forms can be used for the periodic function f. In this paper,
the simplest function is used:

f(t)=l—}a+l%ac052n(t—t1), where a<£f<1. —()
Therefore,
FO=1T% 11" 0004 11), and — 9
2 4
(pH=1te l—a K _ — ) —orsi _ _
G = 5 + 5 K2+4n2{Kcoszn(t t) —2nsin2n(t—t1)} {17)
_1+a

l—a _ - K
o Ty cosfcos{f+2r(i—tD)}, where COS0= i,

Then, equation (7) becomes essentially the same as the models of PiTcHER
and MacponNALD(1973) and PaurLy and Davin(1981). Examples were shown
in the former study for ¢=—1 and in the latter for =0 (because their
calculating methods were not so useful).
3. The calculating method
(1) Outline

In general, NewTon’s method or the steepest descent method is sufficient
when the number of parameters is less than or equal to 3. MARQUARDT’S
method is most appropriate when there are more than 3 parameters.
MarquarpT’s method has been adopted in this program, since the number
of type-1 and type-2 parameters are both 5. It is also useful for more
complicated functions of f.

A weighted least-squares method was adopted for the object function.

When the data are (¢1, lo1,01), -+ , (tn, lon,0n), the object function is
7 (loi—1)?
Y= i§1 0';‘2 (18)

If g;,=1 (i=1~n), it becomes a normal least-squares procedure.

This BASIC program has been rewritten according to the program of
AxamINE(1985). but the method for scaling the parameters is according to
MARQUARDT(1963).

() MarqQuarpT’s method
MarqQuaRrDT’s method is expressed as follows (in the case of searching

for the minimal point).



(H+21)46=g —{9
H=(57,00,)~( 52 o6 o,)= 60~ o6 o)

__oYy__ oYy oL
g 06 o/ 06
I : unit matrix
460 : correction of 8
tA :transposed matrix of A

When 2 is large, the method approaches the steepest descent method, as

follows :

460=-"1 g . ——0
A
On the other hand, when 2 is small it approaches Newton’s method, as
follows:
H46=g . —@)
The steepest descent method is stable but has a slow convergence; NEWTON’S
method has the opposite characteristics. Therefore, in order to obtain a good
convergence, it is natural to first set 4 to be large; then, to make it smaller,
step-by-step. In general, let v=2, when 4Y< 0, then let 2 be smaller as
Anew=20ld/y and continue the calculation. On the other hand, when 4Y= 0,
let 2 be larger as Amew=joldx p and again try the same iteration term of
calculation.
(8) Scaling of parameters

Though a scaling of the parameters does not affect the convergence
while using NewTon’s method, it affects the convergence while using the
steepest descent method. The reason for this phenomenon is that the scaling
is equivalent to a simple linear transformation, and does not maintain
orthogonality. MArRQUARDT's method is similar to the steepest descent method
when 4 is at first large; thus, it is necessary to adequately scale the
parameters. The scaling of the parameters can be expressed as follows:

0f=si0i , AﬂfZS,’Aﬂi —
oy _ 1 0Y oty 1 9%y
00 si 00; 007 00%  sis; 00,00
Using matrix notation, the above can be expressed as
6*=Se6 , 46%=S460 —
g*=S-lg , H*=S-1HS-1
S 81\ 1
B sl ST N 1
Sn

S is a symmetric but non-orthogonal matrix.
MarquarpT (1963) chose S; (for S) as follows.
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S1= H=(h:j) —

('/ hu N

V/'W) ,
This same type operation is also used to make a correlation matrix from
a covariance matrix; then the diagonal components of H¥=ST! HS[! are
all 1. Therefore, it is expected that A affects each parameter equally. Then,
a good convergence is produced and the initial value of A can be set at

0.01 for the least-squares method.
On the other hand, AkamiNe (1984, 1985) chose S2 (for S) as follows.

1
Sy=| 01 N1 —
0.
Now, it becomes easy to determine parameter errors, since each length of
a parameter hecomes 1. However, convergence would be a little better by
S rather than S
@ Partial differential of each parameter

Using MarquarpT’s method, it is necessary to calculate the partial
differential of each parameter. In this program such calculations are
computed directly by its expression, since convergence is slower when
difference approximation is used. The partial differential expressions of
each curve are given below.

For a type-0 equation, it follows from equation (2) that,

ol .
m—l expho —@5
=K, to
ol dho
90— loo (€XDh0) 20
Oho __
o=t
0ho _
0to =K
For a type-1 equation, it follows from equation (7) that,
0/ _1_ v _
alj 1 e)&phl (27)
=K, t, t1, a
ol _ ohy
6*0 = lw (eXp hl) 60*
oh1 _ .
K {F@ FUO)]’
Oh1 _ 4 OF(to)
0ty K dto
Ohy g JOF()  OF(to)
A
Ohr _ A JOF(@)_ 0F(to)
da K{ Oa 0a }
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0F(to) _
6t00 7—f<t0>

0OF(#) _ 1—a

o = 3 cos2r(t—t1)

OF 1,1 _

R 7 2t yP sin2n(t—¢1)

For a type-2 equation, it follows from equation @0 that,
o/ .
*6*1—0;——1 eXph2 QB)
0=K, to, 11, a

ol _ 6h2
0= —loo(expho)—=
0hy _ OInG () _0InG (o)
oK = U T R
Ohy _ - 0InG(t0)
0to 0to
Ohy _ 0InG(2) _08InG(¢0)
0t1 0t 01
Ohg _ 0InG(#) _0InG(20)
Oa o0a oa

OnG(D_ 06D /3(p)

0GB _ 1—a _
oK 5 sin {20427 (t—¢1)}
_1l-a 2r _ 2 472)si _
= ke Ay {4nKcos2rn(t—t1) + (K2—4n2)sin2n(t—t1)}
0G(to) __0G(ty)
oto ot
aG(Q=~l-ﬂfcosﬂZnSin {0+2rnt—1t1)}
01 2
_1—a 22K . N _
= KranT {Ksin2n({ —¢1)+2rncos2a(f—tp}
oG _1 _ 1 _
30 5 Zcosﬂcos{ﬂ—l—zn(z‘ tD}

The following relationships can be derived from equation @7 :
cosflcos {0+27r(z‘—t1)}=%[cos{20+27r(z‘—t1)} +cos2r(t—£1)]

0G __ 1—a ; — 90
= 5 —sin {20+ 2 (t—t1)} K
(tanf)’ =0'/cos26

00 _ —2m

0K K2+44m?

() Programs of curves

Program 1 is a type-0 program. Programs 2 and 3 are parts of type-1
and type-2 programs different from a type-0 program.



The programs are based on AxaMmINE (1985), but the scaling method
is according to MarquarpT (1963). Gauss’ method of elimnation is used to
solve simultaneous linear equations. Because H is a symmetric matrix,
only the upper triangular part of H is used for a calculation and the lower
triangular part of H is used for saving the initial values of H for a fur-
ther calculation, with Anew=2o0ld x y when 4Y = (0. The covergence criterion
is that 2 is continously made (10 times) larger. The Iteration times become
large if the precision of the computer is high.

4. Consideration of models

By comparing %#; and /2, it can be seem that both expressions have
the same form. Such a form is produced by adding a periodic changing
part to a linear increasing part.

hi=—K{t—Ci—H ()}, where C;=const. —@9
and H;(t+1)=H:(t).
K1=,~132f“ K Ky=K
-2 5 —4o— NG (o)
Ci= ita F (o) Co=to K
__1ll—ag; _ _ InG@)
Hi= 2n1+asm27r(t t1) Ho e

Then, each type-1 and -2 curve can be surrounded on both sides by two
voN BERTALANFFY curves (equation @) as follows:

min H; £ H; < max H;

min top; < C;+H; < max to; —@0
max N )
min /;=[c(1—exph;), where min —@)

hf=—K;(t—max to;)

Therefore, when sampling intervals are all 1 as #;+1—¢f;=1(=1~n—1),
there is only one solution of K ; but # has a range similar to equation @0
(type-0). One should be careful when comparing values of #¢ when using
voN BErTALANFFY model (type-0).

Next, consider Hs If K < 2m, the following relationships exist:

K K _

h— 2 K g T
O Kitanr T on <1 2

and cos(%—I—t):—sim‘.

If x <1, then In(1+x)=x.
Therefore the following equation is obtained from equation (7 :

oy 1taf, 1—a _
(,(;)__2 [1+1+ac050cos{0+2n(l‘ 1‘1)}]

—iplte_l—a K _
InG(¢)=In 3 1Ta o sin2r (¢ —t1).

The first term on the right side would be eliminated by the term -InG(%o);
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then, it becomes

—— 1 1—ay —t)=
Hy= o H_asmzfr(t t1)=H}.

This expression can be regarded as
hi=ha, —69
In general, K for aquatic organisms is much smaller than 2r (K< 2nr).
Also, an expansion of a type-1 equation is more natural than that of a type-2
equation. Therefore, it is practical to use only type-1.
5. Extreme points of the growth rate
Though the water temperature is extreme at f’=0, the growth rate
is extreme at //=0. Both points differ as follows:
= —leaexp hi W21 =0
24 Rl =0. —83
The above becomes the following for a type-1 situation:
h;=—KY, h)=—Kf'
and Kjfi—f'=(. —089
This equation can not be solved analytically and NewTon’s method should
be used :
y=Kf2—f',  y'=2Kff"—f"

dt=—-2, —6

This iteration converges easily since the number of parameters is only 1.

In a type-2 equation, from equations (0 and 83 with G'—KG=—Kf,
it becomes

Kf—f'=0. —80

However, in this case equation 6§ is more easily obtained directly from
equation (5). Though this can be solved analytically, Newrton’s method has
also been used, just as for a type-1 situation.
6. Error of parameters

An estimation of parameter errors is performed according to AKAMINE
(1985). The following approximate equation is considered to be in the
neighbourhood of the solution :

4 Y.=‘%f40H40. —8)

This equation shows that
V=<46t40>~H-1, where < > :expected value. —88
The most basic method for an estimation is to move only one param-
eter with the other parameters fixed. Then, from equation 8), 4Y becomes

AY=%/Z,'¢(40,')2.
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Therefore, the parameter which has a small diagonal component of H seems
to be changeable. This is equivalent to saying that the parameter which
has a large diagonal component of H—1 is changeable from equation 3.
Next, it is easy to consider the relationship among the parameters of
the correlation matrix (R). R is obtained, as follows, from equation 3.

h-l
( e ) S,H-1S, — 9

H-1=(h7), S,= ‘/};\ 1
/h

Next, consider the extreme points of the following L2 when 4Y=

const.,
Lz=t404‘9=40%+ ......... +A‘9i-
This becomes
40=Fke; o —u
H—le,-=/1,-e,-, (He,-: 2 where teie,: L
: 1 G=5)

Therefore, these are the eigenvalues and eigenvectors of H-1. For these
vectors, the approximate equation of 4Y becomes

2
ay=12% —

For a test, the following equation was used (DraPER and SMITH 1966) :

4Y _

_bP —
Y=ty P&y m=p, 1-a) @

m : number of samples
p :number of parameters
a : confidence level
Equation @9 has the correct relationship for linear models; however, this is
a non-linear model and equation ¥ can only be used as an approximation.
Next, consider the influences on the scaling of the parameters. Using
equation @3, equation @7 becomes

4 Y:——‘%M&SS —1HS—-1546 =%140*H*Ao*.
And equation (40) becomes
H*e;*=tS—1HS-1Se;=tS— Lre,

H*ei*=tS—1S—lTl-ei*.

Therefore, ef is not an eigenvector of H¥, since S is not an orthogonal
matrix ((S=S5=S5-1). This is easy to understand from the following rela-
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tionship :
L2*=t40*40*=140S240=s}407+--------.- + s2462.

In general matrix theory, the eigenvalue resolution is as follows :

A
P—lAP=( \ )
Anl.

A and B are “simillar” as defined by the relation
B=0Q-1AQ.
It follows that

1
P_I(OBO_I)P=(0—1P)—IB(()»1P)=( N )
Anl .

Then, B has the same eigenvalues as A and its eigenvectors are

e *=Q-le;.
However, because S % S—1, H* and H are not “similar”. Thus, such
relationships do not exist between H* and H.

From the above it can be seem that the choice of the scalling method
is an important problem for the estimation of parameter errors on eigen-
vectors of H. In this paper, S is chosen to be the same as that of AKAMINE
(1985). It is therefore possible to treat parameter errors as a ratio of error
to its own parameter length. In a practical calculation, first set the solution
values of the parameters as the initial values for the program, then, run
and stop at line 135. Finally, output values of HESSIAN (I, J). Because
these values are Hf = S7! HST!, the operation Hj = S;1S H} S S;!
is necessary to obtain Hj . In practice, it is sufficient to calculate the
expression as follows.

HESSIAN (I, JD*«SCALE (D%SCALE (J)=P (D«P (J)
Next, consider the correlation matrix (R). It becomes as follows

from equation (39) :
R*=S8 * H*-1S *
H*-1=(S-1HS-1)-1=SH-1S

1 1
S ¥ = }/2*1—171\7_1: - 31‘/E\\,, ‘/1‘
L Sny/ Mo
Then it becomes
H-1_ S s H*1
S, | ] S
R R



Sy SS;l=1I

(S7 S=S,

Obviously, this can be expressed as

R*=R.
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Therefore, a correlation matrix is never affected by the scaling of parame-

ters.

This is obvious from the definition of the correlation coefficient.

The correlation matrix is regarded as the covariance matrix of the

parameters standardized according to their standard deviation.

S, is regarded as one of the scalings of the parameters.

of each other.

However,
If H-1(V)is a

diagonal matrix then S;=S,. This means that paraneters are independent

Therefore, this relationship does not exsist in general.

One of the typical analysing method using eigenvalues and eigen-

vectors is the principal component analysis. In this method, the user chooses

either a covariance matrix or a correlation matrix for his object.

in general, it is better to choose a correlation matrix.

However,

In this paper H¥ '=S,H 1S, is used. If a part of the solutions of

parameters is near (0 (for example.

t1=0 or a=0),
since the part of errors ({1, @) is evaluated too large.

it is not sufficient

In general, though

it is better to use a correlation matrix, there is another method that the

user sets s; for each parameter.

In such cases, since the calculations are

all the same, calculation details are omitted.

7. An example computation

(1) The data for computation

The artificial data in Table 1 were used for a test computation. This

periodically oscillating data is set as [,,=100, £=0.5 and #=0.5.

i li
0.8
1.0
1.2
1.3
1.5

N S Ul W N

1 0.5

1.7

Table 1. The artificial data for the test of Program 1~3.

loi

5
12
18
30
36
42
45

ai

@

LW W s o

i
8
9
10
11
12
13

14

(2) Results of computations

li

2.0
2.2
2.4
2.5
2.8
3.0
3.2

loi

47
54
63
66
69
68
74

ai

W W L WY

[

i
15
16
17
18
19
20

ti

3.5

4.0
4.5
5.0
7.5
10.0

80
82
87

99
99

[\CRIV)

b O ow

The results of computations are given in Table 2. The graphs of the

results were drawn using an XY-plotter (Fig. 1). A graph of a type-2

equation is omitted because it is the same as that of a type-1 equation

and they are difficult to distinguish. This is because equation (32) exists,

approximately, for A <& 2n.
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Table 2. Results of the computation by Program 1~3 for
the data in Table 1.

;l;(ierrnaisio(r)lfs leo (Kli)l) 10 i1 a Yo
Initial value 0 100 0.5 0.5 0.25 0.0
type-0 3 100.916 0.478494 | 0.495538 19.9981
type-1 5 100.623 (gi'gg%%}) 0.388283 | 0.229144 | 0.119223 3.93503
type-2 6 100.615 0.487133 | 0.388253 | 0.21616 0.119418 3.98904
D K1=1J2”’K o
MODEL B
120
118 }
100 5
38t
80
- 70}
5 60
Z 50 |
— 49
30 |
e t
10
. . 1 : \ . 1
/] | 2 3 4 S5 6 7 9 18 11 12
TIME

Fig. 1. Graphs of type-0 and type-l for voN BERTALANFFY
model in Table 2. (The periodically oscillating
curve is type-1 and the other is type-0.)

The results of calculations for max/;, min/; equation (31) are listed
in Table 3 and Fig. 2. Also, in this case a graph of a typh-2 equation is

omitted because it is the same as that of a type-1 equation.

The v

alues of

t for extreme points of the growth rate are given in Table 4. These values
are rather different, but they seem natural since the values of #; are even
more different than the other parametes in Table 2.



Table 3. Min #0 and max #9 for each type.
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min %9 to max £o
type-1 0.368421 0.388283 0.618916
type-2 0.367569 0.388253 0.617524

MODEL 1

100
9
80 |
70
60 }
I
l__
(550 |
L140
—
30t
2o t
10 }
1 2 3 4 9
T I ME
Fig. 2. Graphs of type-1 and type-0 for min #, ¢, and max ¢, in Table 3.
(The upper curve is type-0 for min #, the lower curve is type-0
for max ¢, and the middle curves are type-0, 1 in Fig. 1.)
Table 4. Extreme points for each type.
maximal point t1 minimal point
type-1 0.180361 0.229144 0.729856

type-2 0.188181 0.21616 0.71951
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Thus, it has been proved that the type-2 equation results in the same
type curves as for the type-1 equation. Therefore, most of the following
descriptions are according to type-1 only.

8 Estimation of parameter errors

The results of an estimation of parameter errors are listed in Tables
5 and 6 and their graphs are given in Figs. 3 and 4. The eigenvectors of
the type-1 equation show that ¢ is the most changeable. This is because
intervals of data are clearly too large (Fig. 4). Even von BERTALANFFY
model (type-0) may be sufficient for this data.

BASIC programs (HAuseHOLDER transform, bisection method, WIELANDT’S
inverse iteration) of % - JH(1983) were used to compute an inverse matrix

and the eigenvalues and eigenvectors.

Table 5-a. Results of the calculation to estimate errors of
each parameter (type-0).

parameter { leo K to 2 x10° (%)
solution (s2) 100.916 0.478494 0.495538
s1 1.02521 95.6023 39.4126
go X104 — 3.44588 ~ 2.8637 ~ 1.70757 ‘
H* I 1 0.847855 ~ 0.512361 ‘
1 - 0.735915
| 1
H*; l 10704 4012.72 - 1035.29
‘ 2092.62 — 657.483
‘ 381.438 l
e e N
R¥* \V*1) 0.367830 - 0.854352 - 0.474288 |
_81 | 3.02680 2.89841
-.31 .66 6.33034
el 1 0.108342 - 0.506386 - 0.855474 f 8.10607
‘ (83.35)
es 0.363887 - 0.780615 0.508160 1.53827
(15.82)
e3 - 0.925160 - 0.366357 ~ 0.099309 | 0.08060
(0.83)

i 1 f/:é;:H*z—l



Table 5-b. Results of the calculation to estimate errors of each
parameter (type-1).

parameter | len K to I3 a | 2; %103 (%)
S S B
solution (s2) 100.623 0.870266 0.388283 0.229144 0.119223 I
s1 1.02897 52.0887 56.9683 24.8581 48.9777
go X104 -4.92649 -3.23386 3.35114 -0.96926 -5.43809 |
H*; 1 0.847876 -0.506777 0.278961 0.802523
1 -0.734091 0.405565 0.975324
1 -0.681135 -0.815085
1 0.474802
1
H*) 10720.1 3979.49 -1160.64 164.52 485.195
2054.9 ~-736.084 104.721 258.168
489.287 —-85.8206 -105.279
32.4454 15.7924
34.097
R*\V*1) ' (.372833 -0.8737 -0.5341 -0.4108 -0.15
3T 14.9671 3.3636 1.7924 -112.11
P . 11.5398 13.7500 62.33
~.26 26 B 60,1435 3
.09 .06 .52 | A9 6.87
-.01 -.89 .56 .03 1069.54 ‘
el -0.000083 -0.104191 0.058067 0.007254 0.992834 1083.51
‘ (93.81)
el 0.009028 -0.054637 -0.235281 -0.970231 0.015118 63.4753
‘ (5.50)
es3 0.134000 -0.586609 ~0.767557 0.220129 -0.018265 6.6023
(0.57)
ey -(0.358517 ~0.714410 -0.582644 0.099412 0.108291 1.4048
; (0.12)
es5 0.923814 0.362865 ~0.112477 0.016133 0.044554 (0.08())3
0.00

1) V¥*=H%—1

Table 6-a The approximate value of 4Y1D to estimate the
confidence interval.

p m @ (%) r Yo 41D
type-0 3 20 5 3.197 19.9981 11.28
1 5.185 18.30
type-1 5 20 5 2.901 3.93503 3.805
4.556 5.976

o o |
4Y P
A

F(p,m-p,1-a)
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Table 6-b. The confidence interval of each parameter on e; in Table 5.

k1) leo K to t1 a 4Y2)
-0.33 97.308 0.558454 0.635432 17.70
-0.27 97.964 0.543916 0.609996 11.24
type-0 0.00 100.916 0.478494 0.495538 0.00
0.30 104.196 0.405803 0.368362 10.86
0.38 105.071 0.386419 0.334449 17.95
-1.7 100.637 1.02441 0.349954 0.226318 -0.082004 5.842
-14 100.635 0.997209 0.356718 0.226817 -0.046493 3.353
type-1 0.0 100.623 0.870266 0.388283 0.229144 0.119223 0.000
1.6 100.610 0.725188 0.424357 0.231804 0.308613 3.446
1.9 100.607 0.697986 0.431121 0.232302 0.344124 5.764
1) do=ker
2) 4Y=Y(60+46)—Y(60)
120
110
100 o
0
80 | o
- 78| .
-
(29 60 (
& 50 |
-
40
30
2a t
18
i i ry 1 A 2 i i L i
@ | 2 3 4 3 6 ? 8 3 18 11 12

TIME

Fig. 3. Graphs of type-0 in Table 6-b. (The steepest curve is that

for £k=—0.33, the most gentle curve is that for £=0.38, and
the middle curve is that for £=0.00.)



MODEL 1

100

g 1 2 3 4 3
TIME

Fig. 4. Graphs of type-1 in Table 6-b. (The most oscillating curve
is that for k=—1.7, the most gentle curve is that for k=1.9,
and the middle curve is that for £=0.0.)

@ Comparision with WaLForp’s graph
Results obtained by using WALForD’s graph are compared. WALFORD’S
graph is described as follows from equation(2) :

liv1i=ali+1.(1—a), where a=exp(—K) —
and to=t+%1n(1—l[—;). —

K and /., are calculated using the regression line of equation (43), and ¢,
is calculated for each ¢ by equation (44). Results are given in Table 7 and
Figs. 5 and 6. This method is practical enough for this data, since it is
within a 99% confidence interval for Tables 5 and 6. However, it is
regrettable that this method cannot use anything except regular intervallic
data and, therefore, cannot draw enough information from the data in
Fig. 6.
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Table 7. The data and results of WaLrForD’s graph.

ti los 103 +1 toD)
1.0 18 47 556
2.0 47 68 .595
3.0 68 82 521
4.0 82 88 371
5.0 (88) .627
y=.652x+36.2 to=.534
(leo=104, K=.428) AY=18.0441

(Y0=38.0422)

D to=ti+ Il{ln(1—ll°—“f)
120
118 }
100
90 t
80
70t
68 t
20
40 |
30t
20 t
18 t

y=0.652x+36.2

£ ¢4

@ 10 20 30 40 50 60 70 80 92 100 119 120
Lt
Fig. 5. WaLrorD’ s graph for the data in Table 7.
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MODEL ©
120
110 |
100 |
90 |
80 |
0
60 |
50
48 |
30 |
20 t
18 |

LENGTH

@ 1 2 3 4 5 6 7 8 9 18 11 12

TIME

Fig. 6. Graphs of type-0 in Table 2 and Table 7. (Only
black circles are used for WaLForD’s graph.)

(6) The computing time

These programs were developed while aiming at an easily understood
algorithm and an ability to use it with other curves. Thus, the computing
efficiency could not to be so good. For example, all expressions are computed
by a DEFFN statement. Then, the same computation is performed many
times. In the case of using PC-9801F (NEC), each program required less
than 5 minutes. Therefore, these are sufficient for practical use. When
using a slow computer, it is better to impose the computations of all
expressions into the main program, just like AkaMINE(1985).

The number of iterations seems to be larger in the case of bad initial
values or a high precision computer. Also, it is natural thaf the computing
time becomes longer in the case of a large data entry.
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III. Expansion of logistic and GOMPERTZ models

1. Expansion of logistic model

This expansion is the same as that for von BerTaLANFFY model. The
differential equation of this model is

dl_ _ .
A @

The integral of equation @3 with the initial condition, when #¢=fy let
l=lw/2v is
los
1+expho . —9
This is a “type-0” equation. The differential of equation ¢ is

dl__ a*exphy @)
dt {1+expho}? .

The “type-1" model for the growth rate is

Zl{=al(lm—l)f(t) i —

The integral of equation 49 is

e
l—1+ exphy . —9

From equation #§, the above can be transformed as
}*:’11 (1+expho) , gdz('}*)=a“expho where at=—
Then, the “type-2” model for the growth rate is
d 1. S
a(=a (expho)f(t) . 69

The integral of equation 69 is;

e
1+exphs . —61

It seems that the type-2 expansion is not so natural as that of type-l.

/=

The partial differential of each parameter is as follows :

o/ _ 1 o

0l., 1+exph; ®
=K, to, t1, a

0/_ exphi oh;

06 " (1+exphi)? 66

The extreme points of the growth rate are

Wi2(l—exphy)+h'(1+exphi)=0 . —63
In a type-l equation, it is
Kr2(1—exphi)—f'(1+exph)=0 . —6)

2. Expansion of GompeErTz model

This expansion is alsg the same as that of the former models. The
differential equation of this model is
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dil_ _ .
%—al(lnlm In/) . 69

The integral of equation 69 with the initial condition, when ¢t=t¢¢ let /=/. /e,
is

I=[exp(—expho) . —66
This is a “type-0” equation. The differential of equation 6§ is
%=a*exp(—expho)expho . —6)
The “type-1” model for the growth rate is
Y —ai(inl . —InDF L) . —63
t
The integral of equation 68 is
=l .exp(—exphi) . —69
From equation 66, the above can be transformed as
. . d(nl) _1 di_ o
In/=In{_—expho , i di~a°exph0 where ao=K
Then, the “type-2” model for the growth rate is
AARD — gocexphorct) . —60
The integral of equation 60 is
I=[.exp(—exphy) . —6)

It also seems that the type-2 expansion is not so natural as that of type-l.
The partial differential of each parameter is as follows:

ol __ _ . -
o1, exp( exphi) 62

=K, to, 11, a

0l_ _ _ . 04
00— loexp( exph;)exph,ag

The extreme points of growth rate are
W 2(1—exphi)+ =0 . —63
In a type-l equation, it is
Kr2(1—exph)—f'=0 . —64
3. Programs and results
Program 4 and 5 are the parts of logistic and GompeErTz model
programs different from voN BERTALANFFY model program. These programs
were tested using artificial data. These data are listed in Tables 8 and 9
and the results of the computations are given in Table 10 and Figs. 7 and
8. Computations for type-2 and other calculations has been omitted.
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Table 8. The artificial data for the test of program 4.

i ti loi i i ti los i i ti los i
1 -4.0 1 2 10 -0.7 38 4 19 2.0 87 3
2 -3.5 3 2 11 -03 39 5 20 2.3 92 4
3 -3.0 4 3 12 0.0 48 4 21 2.8 93 3
4 -2.8 7 3 13 0.3 61 4 22 3.0 96 3
5 -24 7 3 14 0.6 62 4 23 3.5 97 2
6 -2.0 13 4 15 0.8 66 5 24 4.0 98 3
7 -1.7 17 3 16 1.0 75 4 25 5.0 99 3
8 -14 18 3 17 1.3 81 3
9 -1.0 25 4 18 1.7 82 3.
120
118 t
108
30 |
8@ |
T 70
—
ng 60
EIJ 20
40
308 ¢
el t
19 |

TIME

Fig. 7. Graphs of type-0 and type-1 for logistic model in
Table 10. (The periodically oscillating curve is
type-1 and the other is type-0.)



Table 9. The artificial data for the test of program 5.
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i ti los ai i ti l0: a; i s l0i a;
1 -1.3 1 3 8 0.2 50 2 15 2.0 88 2
2 -1.0 8 3 9 0.4 55 3 16 2.3 92 3
3 -0.8 16 2 10 0.7 56 5 17 2.7 92 3
4 -0.5 19 3 11 1.0 67 3 18 3.0 94 3
5 -0.3 24 3 12 1.2 77 3 19 4.0 98 2
6 -0.1 29 4 13 1.5 81 2 20 5.0 98 3
7 0.0 40 4 14 1.8 82 3
Table 10. Reaults of computation by program 4, 5 for the
data in Table 8, 9.
Times of
iterations leo K %0 i a Yo
Initial
value 0 100 1.0 0.0 0.0 0.0
logistic type-0 5 99.7154 1.00196 -0.003079 7.28418
& type-1 7 99.7416  2.13245 0.010413  0.014517  -0.050024 1.27517
type-0 4 99.1726  0.993326 -0.080152 17.8405
GOMPERTZ
type-1 9 99.7023  1.94285 -0.014149 0.006776 0.015631 0.986610
120
110
100 -
90 |
808
T 70}
—
60
Z
5 50
|
40 |
38}
20 |
18 }
9 i " L i " 1 1
-3 -2 -1 () | 2 3 4 9 6 7
Fig. 8. Graphs of type-0 and type-1 for GomperTz model in

Table 10. (The periodically oscillating curve is
type-1 and the other is type-0.)
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IV. Conclusion

Two expansions, type-1 and type-2 were considered for each growth
model. Type-2 converged for the same curves as type-1. Type-1 is easier
to expand and treat than type-2. Thus, it is sufficient to use only type-1
as the expansion model.

Although it is possible to use a more complex expression for f, it
becomes more difficult to treat for programing and to understand the
relationship of each parameter. This expansion model seems sufficient for
expressing the growth characteristics using only a few parameters.

Though these programs are not very good regarding computing
efficiency, they are sufficiently practical and make it easy to understand
algorithm and to apply them to other curves.

Acknowledgements

The author is indebted to Mr. Fuminiko Kato of the Seikai Regional
Fisheries Research Laboratory and Mr. Krvouipe Isuioka of the Nansei
Regional Fisheries Research Laboratory for their kind advice and help.
The author is also greatful to Dr. Axkmaiko SHiroTA and Mr. Kunizo TANAKA
of the Japan Sea Regional Fisheries Research Laboratory for their critical
readings of the manuscript. The author would also like to thank Miss
Yasuko Ito for drawing the figures using an XY-plotter.



10
20
30
100
110
120
130
140
150
160
170
180
190
200
210
220
300
310
320
330
340
350
1000
1010
1100
1110
1120
1130
1140
1150
1800
1810
1820
1830
1840
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180

REM
REM
REM
REM

NEXT IREP

BERTALANFFY - MARQUARDT

MAIN ROUTINE
GOSUB *VARIDEF
GOSUB *DATAREAD
GOSUB *INITIAL
FOR IREP=1 TO NIT
GOSUB *SUMUP
GOSUB *CALEQAT

PRINT "ITERATION WAS COMPLETED."

PRI

NT

IREP=IREP-1
GOSUB *PRINTOUT

END
*PEN

D2

PRINT "CONVERGENCE WAS COMPLETED."

PRI

NT

IREP=IREP-1
GOSUB *PRINTOUT

END
*VA

RIDEF

DEFINT I-N

NP
DE
DE
DE

=3

F FNEP1=EXP(-P2(2)*(TIME(K)-P2(3)))
F FNDP1=1-FNEP]
F FNBL =P2(1)*FNDP1
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DEF FNDP2=P2(1)*FNEP1*(TIME(K)-P2(3))
DEF FNDP3=P2(1)*FNEP1*(-P2(2))
DEF FND1 =(BLENGTH(K)-FNBL)/SIGMA(K)
DEF FND2 =FND1*FND1
DIM P(NP),P2(NP),PDELTA(NP)
DIM DIFFER(NP),SCALE(NP),HESSIAN(NP,NP),GVECTOR(NP)
RETURN
*DATAREAD
READ NIT,CLAMBDA,CNU
PRINT "NUMBER OF ITERATION =";NIT
PRINT " LAMBDA ="; CLAMBDA
PRINT " NU =";CNU
PRINT
READ N
PRINT "NUMBER OF DATA =";N
PRINT

DIM BLENGTH(N),TIME(N),SIGMA(N)

FOR I=1 TO N

READ TIME(I),BLENGTH(I),SIGMA(I)
PRINT "I="";I

NEX
RET

PRINT
PRINT
PRINT
PRINT
T I
URN

Program 1-a.

TIME =";TIME(I)
LENGTH =";BLENGTH(I)
SIGMA =";SIGMA(I)

The BASIC program for voN BerraLaxegry model
(type-0) by Marquarpt’s method. (DATA : The
example of the artificial data in Table 1).
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3000
3010
3020
3030
3035
3040
3050
3060
3070
3080
4000
4010
4020
4030
4040
4050
4060
4070
4080
4090
4100
4110
4120
4130
4140
4150
4160
4170
4180
4190
4200
4210
4220
4230
4240
4250
4260
4270
4280
4290
4300
4310
4320
4330
4340
5000
5010
5020
5030
5040
5050
5060
5070
5080
5090
5100

*INITIAL
FOR I=1 TO NP
READ P(I) : P2(I)=P(I)
NEXT I
STOP
GOSUB *CALD2
Y1=Y2
IREP=0 : YDELTA=0
GOSUB *PRINTOUT
RETURN
*SUMUP
FOR I=1 TO NP
GVECTOR(1)=0
FOR J=I TO NP
HESSIAN(I,J)=0
NEXT J : NEXT I
REM
FOR K=1 TO N
DIFFER(1)=FNDP1
DIFFER(2)=FNDP2
DIFFER(3)=FNDP3
D1=FND1 : SS1=SIGMA(K) : SS2=SS1*SS1
FOR I=1 TO NP
GVECTOR(I)=GVECTOR(I)+D1*DIFFER(I)/SS1
FOR J=I TO NP
HESSIAN(I,J)=HESSIAN(I,J)+DIFFER(I)*DIFFER(J)/SS2
NEXT J : NEXT I : NEXT K
REM SCALING
FOR I=1 TO NP
SCALE(I)=SQR(HESSIAN(I,I))
NEXT I
FOR I=1 TO NP
GVECTOR(I)=GVECTOR(I)/SCALE(I)
FOR J=I TO NP
HESSIAN(I,J)=HESSIAN(I,J)/SCALE(I)/SCALE(J)
NEXT J : NEXT I
REM
FOR I=2 TO NP
HESSIAN(I,1)=GVECTOR(TI)
NEXT I
FOR I=2 TO NP-1
FOR J=I+1 TO NP
HESSIAN(J,I)=HESSIAN(I,J)
NEXT J : NEXT I
RETURN
*CALEQAT
K2=0
*REPEAT
K2=K2+1
IF K2>11 GOTO *PEND2
PRINT "K=";K2
PRINT " LAMBDA =";CLAMBDA
PRINT
FOR I=1 TO NP
HESSIAN(I,I)=1+CLAMBDA
NEXT I

Program 1-b. Continued.



5110
5120
5130
5140
5150
5160
5170
5180
5190
5200
5210
5220
5230
5240
5250
5260
5270
5280
5500
5510
5520
5530
5540
5550
5560
5570
5580
5590
6000
6010
6020
6030
6040
6050
7000
7010
7020
7030
7040
7050
7060
7070
7080
7090
7100
7110
7120
7130
7140
7150
7160
7170
7180

GOSUB *GAUSS
REM SCALING
FOR I=1 TO NP

PDELTA(I)=PDELTA(I)/SCALE(I)

P2(I)=P(I)+PDELTA(I)

NEXT I
REM
GOSUB *CA

IF Y2>=Y1 GOTO *PREREP

REM
CLAMBDA=C
YDELTA=Y2
Y1=Y2
FOR I=1 T
P(I)=P
NEXT I
GOSUB *PR
RETURN
*PREREP
CLAMBDA=C
FOR I=2 T

LD2
LAMBDA/CNU
-Y1

O NP
2(1)

INTOUT

LAMBDA*CNU
O NP

GVECTOR(I)=HESSIAN(I,1)

NEXT I
FOR I=2 T
FOR J=

HESSIAN(I,J)=HESSIAN(J,I)

NEXT J :
GOTO *REP
*CALD2
Y2=0

O NP-1
I+1 TO NP

NEXT I
EAT

FOR K=1 TO N

Y2=Y2+
NEXT K
RETURN

*GAUSS
REM

FND2

FOR I=1 TO NP-1

FOR K=

Q1=HESSIAN(I,K)/HESSIAN(I,I)
GVECTOR(K)=GVECTOR (K) -Q1*GVECTOR(I)

I+1 TO NP

FOR J=K TO NP
HESSIAN(K,J)=HESSIAN(K,J)-Q1*HESSIAN(I,J)
NEXT K : NEXT I

NEXT J :
REM

PDELTA(NP)=GVECTOR (NP) /HESSIAN(NP,NP)

FOR I=NP-1 TO 1 STEP -1

T1=GVE
FOR J=

T1=T1-PDELTA(J)*HESSIAN(I,J)

NEXT J

CTOR(1I)
I+1 TO NP

PDELTA(I)=T1/HESSIAN(I,I)

NEXT I
RETURN

Progam 1-c.

Continued.
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8000 *PRINTOUT
8010 PRINT "IREP=";IREP

8020 PRINT " D2 =";Y1
8030 PRINT " DELTA-D2 =":YDELTA
8040 PRINT " L-INFINITY =";P(1)
8050 PRINT " K =":P(2)
8060 PRINT " TO =":P(3)

8070 PRINT

8080 RETURN

10000 DATA 50,0.01,2
10010 DATA 20

10020 DATA 0.5, 5,3,0.8,12,3,1.0,18,2,1.2,30,4,1.3,36,3
10030 DATA 1.5,42,3,1.7,45,3,2.0,47,2,2.2,54,3,2.4,63,3
10040 DATA 2.5,66,3,2.8,69,3,3.0,68,6,3.2,74,3,3.5,80,3
10050 DATA 4.0,82,2,4.5,87,3,5.0,88,3,7.5,99,5,10.0,99,2
10060 DATA 100,0.5,0.5
Program 1-d. Continued.
1020 PATI=3.14159265#%
1100 NP=5
1120 DEF FNDP1=1-FNEP1
1130 DEF FNBL =P2(1)*FNDP1
1140 DEF FNDP2=FNEP2* (FNFT1(TIME(K))-FNFT1(P2(3)))
1150 DEF FNDP3=-FNEP3*FNFT3(P2(3))
1160 DEF FNDP4=FNEP3* (FNFT4(TIME(K))-FNFT4(P2(3)))
1170 DEF FNDPS5=FNEP3* (FNFTS5(TIME(K))-FNFT5(P2(3)))
1180 DEF FNFT1(TM)=FNP51*TM+FNP52/2/PAI*SIN(FNTM1 (TM))
1190 DEF FNFT3(TM)=FNP51+FNP52*COS(FNTM1 (TM) )
1200 DEF FNFT4(TM)=-FNP52*COS(FNTM1 (TM) )
1210 DEF FNFT5(TM)=TM/2-1/4/PAI*SIN(FNTM1(TM))
1220 DEF FNEP1=EXP(-P2(2)*(FNFT1(TIME(K))-FNFT1(P2(3))))
1230 DEF FNEP2=P2(1)*FNEP1
1240 DEF FNEP3=P2(2)*FNEP2
1250 DEF FNP51=(1+P2(5))/2
1260 DEF FNP52=(1-P2(5))/2
1270 DEF FNTM1 (TM)=2*PAI*(TM-P2(4))
4103 DIFFER(4)=FNDP4
4105 DIFFER(5)=FNDP5
8064 PRINT " T1 =";P(4)
8067 PRINT " A =":P(5)

10060 DATA 100,0.5,0.5,0.25,0

Program 2. The different parts of the program for von
BerTaLANFFY model (type-1) from Program 1.



1100
1120
1130
1140
1150
1160
1170
1180
1190
I2(TM))
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350

1120

1140
1150

10010
10020
10030
10040
10050
10060
10070

1120

1140
1150
1160
1170

10070

NP=5
DEF FN
DEF FN
DEF FN
DEF FN
DEF FN
DEF FN
DEF
DEF

DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF

DEF
DEF
DEF
DEF
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DP1=1-FNEP2

BL, =P2(1)*FNDP1
DP2=FNEP3*(-(TIME(K)-P2(3))+FNGT6(TIME(K))-FNGT6(P2(3)))
DP3=FNEP3*(P2(2)+FNGT7(P2(3)))
DP4=FNEP3* (FNGT7 (TIME(K))-FNGT7(P2(3)))

DP5=FNEP3* (FNGT9(TIME(K))-FNGT9(P2(3)))
FNGT1(TM)=FNP51+FNP52*FNCO1* (P2 (2)*FNCO2 (TM) -2*PATI*FNSI2(TM))
FNGT2(TM) =FNP52*2*PAI/FNCK1/FNCK1*{(4*PAI*P2(2)*FNCO2(TM)+FNCK2*FNS

FNGT3(TM)=FNP52*FNCO1* (P2(2)*2*PAT*FNSI2(TM)+4*PAT*PAI*FNCO2{TM))
FNGT5(TM)=1/2-1/2*FNCO1*(P2(2)*FNCO2(TM)-2*PATI*FNSI2(TM))
FNEP1=EXP(-P2(2)*(TIME(K)-P2(3)))
FNEP2=FNGT1(TIME(K))/FNGT1(P2(3))*FNEP1
FNEP3=-P2(1)*FNEP2
FNP51=(1+P2(5))/2
FNP52=(1-P2(5))/2
FNTM1 (TM)=2*PAI*(TM-P2(4))
FNCO1=P2(2)/FNCK1
FNCO2 (TM)=COS(FNTM1(TM) )
FNSI2(TM)=SIN(FNTM1(TM))
FNGT6 ( TM) =FNGT2 (TM) /FNGT1 ( TM)
FNGT7(TM) =FNGT3(TM) /FNGT1 (TM)
FNGT9(TM) =FNGT5 (TM) /FNGT1 (TM)
FNCK1=P2(2)*P2(2)+4*PAI*PAI
FNCK2=P2(2)*P2(2)-4*PAT*PAI

Program 3. The different parts of the program for von

BerTALANFFY model (type-2) from Program 2.

DEF FNDP1=1/(1+FNEP1)

DEF FNDP2=P2(1)*FNEP1*(TIME(K)-P2(3))*FNDP1*FNDP1
DEF FNDP3=P2(1)*FNEP1*(-P2(2))*FNDP1*FNDP1

DATA 25

DATA -4,1,2,-3.5,3,2,-3,4,3,-2.8,7,3,-2.4,7,3
DATA -2,13,4,-1.7,17,3,-1.4,18,3,-1,25,4,-.7,38,4
DATA -.3,39,5,0,48,4,.3,61,4,.6,62,4,.8,66,5
DATA 1,75,4,1.3,81,3,1.7,82,3,2,87,3,2.3,92,4
DATA 2.8,93,3,3,96,3,3.5,97,2,4,98,3,5,99,3

DATA 100,1,0

Program 4-a. The different parts of the program for logistic

DEF

DEF
DEF
DEF
DEF

DATA

model (type-0) from Program 1. (DATA : The
example of the artificial data in Table 8).

FNDP1=1/(1+FNEP1)

FNDP2=FNEP2* (FNFT1(TIME(K) )-FNFT1(P2(3)))*FNDP1*FNDP1
FNDP3=-FNEP3*FNFT3(P2(3))*FNDP1*FNDP1

FNDP4=FNEP3* (FNFT4(TIME(K))-FNFT4(P2(3)))*FNDP1*FNDP1
FNDP5=FNEP3* (FNFT5(TIME(K))-FNFT5(P2(3)))*FNDP1*FNDP1

100,1,0,0,0

Program 4-b. The different parts of the program for logistic model

(type-1) from Program 2. (DATA is omitted : same as
Program 4-a).
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1120

1140
1150

10010
10020
10030
10040
10050
10060

1120

1140
1150
1160
1170

10060

DEF

DEF
DEF

DATA
DATA
DATA
DATA
DATA
DATA

Program 5-a.

DEF

DEF
DEF
DEF
DEF

DATA

Program 5-b.

FNDP1=EXP(-FNEP1)

FNDP2=P2(1)*FNEP1*(TIME(K)-P2(3))*FNDP1
FNDP3=P2(1)*FNEP1*(-P2(2))*FNDP1

20
-1.3,1,3,-1,8,3,-.8,16,2,-.5,19,3,-.3,24,3
-.1,29,4,0,40,4,.2,50,2,.4,55,3,.7,56,5
1,67,3,1.2,77,3,1.5,81,2,1.8,82,3,2,88,2
2.3,92,3,2.7,92,3,3,94,3,4,98,2,5,98,3
100,1,0

The different parts of the program fon GoMPERTZ

model (type-0) from Program 1. (DATA : The
example of the artificial data in Table 9).

FNDP1=EXP(-FNEP1)

FNDP2=FNEP2* (FNFT1 (TIME(K))-FNFT1(P2(3)))*FNDP1
FNDP3=-FNEP3*FNFT3(P2(3))*FNDP1

FNDP4=FNEP3* (FNFT4 (TIME(K))-FNFT4(P2(3)))*FNDP1
FNDP5=FNEP3* (FNFT5(TIME(K))-FNFT5(P2(3)))*FNDP1

100,1,0,0,0

The different parts of the program for GoMPERTZ
model (type-1) from Program 2. (DATA is omitted :
same as Program 5-a).

Correspondence of variables

NIT Number of iterations
CLAMBDA 2

CNU v

N Number of data
TIME(D) i

BLENGTH(I) 1oz

SIGMA(I) oi

NP Number of parameters
P(D fold

P2(D) fnew

PDELTA(I) 46

DIFFER(I) %

SCALE(D) A

HESSIAN(L,]) : H

GVECTOR(D) g

Y1 Yold

Y2 Ynew

YDELTA 4y
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JEFARIEOT X B IR iR O PRR &
MARQUARDT iz &k % BASIC 7w /5 &

iR SIE

SRS - (¢ + 1)=F(t) ZH\T von BErRTALANFFY, logistic, GompErTZ HiEEDOIEIER T/
Stz M=—K{F()—F (o)}, F'=f, f=(1+a)/24+(1 —a)/2+cos2m(l—t)):aldfL 1D&
TN TEN I=lo(1 —exp A1), [=1eo/(1 +exp h1), [=lcoexp (—exp M) &7z,

#E7 D BASIC 7'v 77 %)/ (1985) ity MARQUARDT JEICCIER L7z, F7Blx A
TADPEIR, 3T A= X DOFUEMT, AROEF L WaLrord DEEREE O, KERE
TEBHEFITOWTLHEELL. COIEIHITHY, T e T aidbolif~AS I EHTE 5.



