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An Interval Estimation for the PETERSEN Method using
Bayesian Statistics

Tatsuro AKAMINED

Abstract

The statistical model for the PETERSEN method is a hypergeometric distribution. Ap-
proximation to a binomial distribution has been used, and the usual method for this bi-
nomial model is based on approximation to a normal distribution. The Bayesian statistical
model for a binomial distribution, which assumes that the prior distribution of parameter is
uniform, corresponds well with the conventional method. However, the Bayesian statistical
method for a hypergeometric distribution which assumes the uniform prior distribution is
not feasible. The prior distribution according to the inverse squared parameter is natural
for this model. Beta function and zeta function are important to understand these methods.
This model is simpler to understand and easier to calculate by micro-computer than the

conventional method.

Key words Bayesian statistics, PETERSEN method, hypergeometric distribution, binomial

distribution, beta function, zeta function

Introduction

The PeTERSEN method is the simplest method to employ in mark-recapture ex-
periments. Let N: total number of individuals to estimate, M: number of marked
individuals in N, n: total number of sampled individuals, m: number of mark-
recaptured individuals in z (Fig.1). Mean and variance of estimater N are well

known, as follows:

V) M) (1.2)
V(N) :M(Mflnn%;ﬂ”;m) . (1.3)

But, these are not efficient for interval estimation.
In this paper, interval estimation based on Bayesian statistics is developed.
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Fig. 1. The image of the PETERSEN method.

First, the method for a binomial distribution model is shown and compared with the
conventional method. Next, the method for a hypergeometric distribution model is
shown. These methods are logical extensions of the conventional method.

The method for a binomial distribution model
1. Hypergeometric distribution

The statistical model for the PETERSEN method is a hypergeometric distribution.
It is expressed as follows:

(58) (=)
P (N, m)= N (2.1)
)
Where, the binomial coefficient (number of combinations):
a\_ a _ ala—1)------(@e—b+1)
(5)= Ba—b1 = B—Tpd 2.2)
This expression gives probability of m for fixed N, M and ». Then,
% PN, m)=1, 2.3)
This equation is proved easily by the binomial theorem:
a— < a bga—b
(o= 3 () pba=s. (2.4)
Expanding both sides of
A4+x)M (14+x)N—M=1+x)N (2.5)

by (2. 4) and then equating coefficients of x to the nth power gives (2. 3).
On the other hand,

pov, my ) (1)

()
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M Nt el (Nl
m!(M—m)! m—m)! (N—M—n-+m)! N!
ny /N—mn
(m) (‘M~m) (2.6)
<’N\ '
M)
Then M and n are interchangeable. There are two expressions for estimator N as
follows:
- M__ M vt _ "
N m/n P> N”m/M‘s' @7

In this paper, let M =n. Then, the next approximation is useful for the former ex-
pression of (2.7). If M < wn, then, let interchange M and n.

2. Approximation to a binomial distribution
A hypergeometric distribution is approximated to a binomial distribution as
follows:

>0 AT N M- M- m+1)(N- M) (N-M nt+m+1)
PN, m) (m) Neooonn (N- n+1)

77(%)M M—1 M—m+1 N—M

m) o

M—m+ Y N—M-n+m+1
N N-1 N—-—m+1 N—m N—n+1

When N > n and M > m, this is approximated to

P(N, m) ;( » )(%)"( N;&*]M)" "”’;(’ ) g

—P(p, m). (2. 8)
Where, p—M/N, pt+qg—1.

3. Bayesian statistical method

The following equation is essential for this method.

S S:) (;Ill) prgr—mdp— 11'41» f . (2.9)

The proof of this equation is shown in the next chapter.

The Bayesian statistical method is demonstrated as follows: Let #/: parameter
to estimate, ¢: data, P(#, ¢): probability of data for each #, P°(0): prior distribution of
. Where,

X Peo)=1. (2.10)
Let P*(f): posterior distribution of #. Then,

oy PP, 1) ‘
PEO= 5 b oy - (2.11)

Where,
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X Px0)=1. (2.12)
In particular, the prior distribution of # is a uniform distribution:
P°(#) = e = const. (2.13)
The posterior distribution becomes as follows:

P, t

PH()) == e 2 .

PX0) TP, ) (2.14)
In this case, 0 is p. It is natural to set the prior distribution of p to a uniform

distribution from 0 to 1. Although (2.11) and (2. 14) are equations for discrete dis-

tributions, the distribution of p is a continuous distribution. Let > — fdf for

(2.11) and (2. 14) to obtain equations for a continuous distribution. Then, prior and

posterior distributions of p become as follows by (2. 9).
P°(p) =1 = const. (2.15)
P* p)=m+1)P(p, m). (2.16)

MaTsuBARA (1985) stated that this model is the original Bayesian theorem by THoMAS
Baves.

4. Beta function
The beta function is defined as follows:

Bla, b) | xe 11— wp-ds. (2.17)
On the other hand, the gamma function is defined as follows:
r@ - e xaide. (2.18)
The following formulas are well known.
Ba, ”>:*lf<<(2 i}()’;i (2.19)
I'(a+1)=al. (2.20)

Then, the following equation is easily obtained.

) ! 1 1 )
Bla+1, /’H)*’(&Hbﬂ)’! T atb+1 <a + b ) (2.21)
a

The gamma function is regarded as a generalized factorial function and the beta
function is considered to be a generalized (reciprocal number of) combination. These
relations give (2. 9) easily, as follows:

S () Bon1, n—m41) — L. 2.9

Alternatively, the ‘integration by parts’ gives the same result as follows:

Bla+1, b+1)— S;xﬂ(lfx)b dz
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. [___1-_ gat1 (1fx)b:|l+,,,b, . Sl xatl (1—x)b—1 dx
a+1 o a+1Jo

b
i T T - 72 . .
Recursion of (2. 22) gives,

o b b1 . 1
B(a}l,b—i—l)raJrl e a+[)B(a+b+1’1>'

Where, Blatb+1, 1= S; xatb dx = a+f£+’1”-

Then, we get (2.9").

5. A BASIC program
Although calculations of «! are not easy because «! is too large, P(p, m) is not
large. In this paper, P(p, m) is calculated as follows: The binomial coefficient is

calculated by the following equation:
PN b—1 .
(N1 @—t ,
\ ) il_:[o b1~ (2.2
Then, multiplying by p and ¢ we get P(p, m).

Let f(p) be as follows:

f(p):pmqn*m:pm(]_k_j)>n*m’ (2 23)
dar m-—np . 9.9
ap pap =20

Therefore, when p=m/n, P(p, m) is max.

An example of a BASIC program is shown in ‘Program 1’. This program cal-
culates only the sum of P(p, m). It is regarded as the ‘middle point formula’ or
‘trapezoidal formula’ of numerical integrations.

[Example 1] Estimate N when M =2000, »—100 and m=20.

Point estimation is N— Mmn/m —10000.
Interval estimation is as follows: The result of Program 1 shown in Table 1
and Fig. 2. The 95% interval is p =0.13 ~ 0.28. Then, N = 7100 ~ 15400.

Although this interval of p is minimum, that of N is not.

6. The conventional method
The non-Bayesian statistical method is as follows: When 7 -> co, a binomial

distribution approaches a normal distribution:
1 1/ x—p\2
N(p, (;‘):1"/'—'2—7?0'_ exp {* 9 < ';‘LW) } . (2.25)

Where p=np, s=V'npq .
Let z be as follows:

_np—m . ‘
= upg P4 L. (2.26)
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Table 1. Values of binomial distributions:
P(p, m) when n=100 and m=20.

P P 101x3'P

2 .00 . 00000000 . 00000000
oL .01 2.398650 % 102 2.422637x 10718

- .12 . 00743687 1. 23904116

2 .13 .01477606 2. 73142296

.08 .14 . 02579812 5. 33703350

o -

o g .19 . 09616673 41. 02511873

.20 . 09930021 51. 05444043

02 K .21 . 09631735 60. 78249251

L S Y S-S S S S .27 .02643963 95. 12671528

Parameter (p) .28 .01815146 96. 96001313

Fig. 2. The graph of P(p, m) when =100 .29 .01196132 98. 16810662

and m=20. .40 .00001053 99. 99923869

.60  2.864017x107**  100. 00000000

1. 00 . 00000000 100. 00000000

Then z distributes according to N(0, 1). The confidence interval for z is easily ob-

tained (ex. 95% confidence interval is —1.96 < z < 1.96). From (2. 26)

P:?g—k zw/g.

(2.27)

Let » of the last term be fixed. Then, we get the rough estimator as variance of p:

V(p=oxpy=LL — 1 (1"} _mn"m)

n n n3
The rough 95% confidence interval is given by m/n=+20(p).
On the other hand, from N=M/p

dN__7 dp.

This is approximated to

PULS
4AN2= Ap?
T p* .

This is regarded as the ‘error propagation rule’. From (2. 28) and (2. 30)

M2n4 m(n— m) M2n(n— m)
n3 m3

V(N)— LV (p)=

Then, we get (1. 2).
The variance of a hypergeometric distribution is as follows:

V(m) =]X]__’]’f npq .

On the other hand, the variance of a binomial distribution is npg. Multiply,

(2.28)

(2.29)

(2. 30)

(2.31)
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Fig. 3. The image of (m, p) coordinates.

N—n_ N—n M-—m
N-1"7 N — M
into (1. 2), then we get (1. 3).

7. Relation between the Bayesian statistical method and the conventional method
Fig. 3 shows an image of (m, p) coordinates. From (2. 26)

And (2. 25) shows that the ratio of the height of N(g, ¢) to that of N(0, 1)is 1/V o .
Then, from Fig. 3

P(p)=P()[Vnpq . (2. 33)
Substituting (2. 32) and (2. 33) for the following equation:
P(p)dp=T(2)P(z)dz. (2.34)
__ 2p(A—p)
Then, we get T(z)——(m . (2. 35)

Therefore, the following equations hold:

[~ P@dz=1 (2.36)

[ P@rdp=|" T@P@d=1- (2.37)

The graph of (z, T'(z)) for Example 1 is shown in Fig. 4-a.
AkAMINE (1989) demonstrates the case of extraction. In this case, # is required
when p and m is fixed. From (2. 26)

_ nptm
dz= 2mV npq

dn. (2.38)

Similar to (2. 35), we obtain

T(z):%%’:—m ) (2.39)
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Fig. 4-a. The graph of T'(2) for the PETERSEN method.
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Fig. 4-b. The graph of T'(z) for extraction.
The graph of (z, T(z)) for Example 1 of 1.,
AkAMINE (1989) is shown in Fig. 4-b.
Comparing Fig. 4-a and b suggests that 5
the bias of each model is almost equal. s A J
In AxamINE (1989), ‘Theorem 2’ proves 18 AW
that precent points for the ordinate cor- J
respond to that for the abscissa in Fig.
5 (which is equivalent to Fig. 3 in this ¥
paper). Then, in this model, the same o = ~ : : 1
feature is expected. Fig. 5 suggests this z
Fig. 5. Comparison of a normal distribution

relation.
On the right side of Fig. 4-b, the line
T(z) is as follows: When z2=0, n=m/p,

and T(z).
A: y=exp (—2%/2),
B: y=(140.12) exp (—2%/2).

_ 2n 2n 1
T@O= ™ ™ om = 5
On the other hand,
AT _ dT dn _ dwmvVmpg | 1 [1—p
dz = dn dz T “(nptrm) 2\/ m p? (2.40)

Therefore, this line is
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G- (14 %\/l;nf’ 2). (2.41)

In Fig. 5, the following equation holds.
Sjm (a-+bx)exp (—x2/2)dx=a S* exp (—2/2)dx (2.42)
[Example 1'] Estimate N by the non-Bayesian method when M = 2000, 7 =100
and m = 20.
959 confidence interval becomes as follows:
Let z=+1.96=+2. Then, (2. 26) becomes
4=(100p—20)2/100p (1—p)
p—p2=(5p—1)°
26p2—11p+1=0
$=0.21+-0.08—=0.13, 0.29
Then, N=6900 ~ 15400.
On the other hand, from (1. 2),
V(N) 4000000, then o(N)==2000,
N=Mn/m2s(N)==10000--4000.
From (1. 3),
V(N )-3960000, then (N )=1990,
N=10000 +3980.
The result of (2.26) almost corresponds with the Bayesian statistical method
(Example 1). This is logical from Fig. 5.

The model for a hypergeometric distribution

1. RIEMANN’s zeta function
when N -> oo, P(N, m) becomes as follows:

P(N, m) —a (N—M)----- (N;M~n+m-}-1)‘

N----(N—n-+1)
M ( M+n— 1
a(l_N)f '''' = ‘nN,m f) e (3.1)
mv I n—l (N=0o0) Nm '
Nm(1= 1) (1 " )
Where, a = <77rlz> M----ee (M —m-1)=const.

Fig. 6 shows P(N, m) when the prior distribution of N is uniform.

This is according to RIEMANN’s zeta function:

< T 2 T ST T ST :
SO X et g Tt (3.2)

The convergence values of the zeta function are well known as follows:
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Probability
~

-l

100 * Zl‘m : 43(‘10 ' 460 * 500 0
Parameter (N)
Fig. 6. The graph of P(N, m) when M=20, Fig. 7. The graph of y=1/x¢ and zeta func-

0 1 2 3 4 s 8 7 8 8 10

n=10 and m=2. tion.
oo (s=1)

L(s)= { 3.3)
a <o (s>1)

It is easy to understand (3. 3) by comparison with integration of

Fo={" L (3.4)

(See Fig. 7).
From (3. 3) when m=0, 1 we get

> P(N, m)=oo. (3.5)
N=M+n—m

Therefore, the prior distribution of N as a uniform distribution to oo is not adequate.

2. Bayesian statistical method
It is natural to let the prior distribution of N accord to the binomial distribution
model in the previous chapter. The prior distribution of p(=M/N) is a uniform dis-

tribution. From the equation:

dp=— (M/N?%dN, 3.6)
we get the following approximation:

dp=— (M|N?) AN . (3.6")

Then, let the prior distribution of N be as follows:

o _ M+1
PN =y v @D
Where the following equations hold.
% P°(\N)=1, (3.8)
N=M
& ° _ 1
N=1V'{Zin_mP (N)P(N, m) BrERE 3.9

These equations are proved in the next chapter. Then the posterior distribution of

N becomes as follows:
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wny. PCNDP(N,m)  (M+1)(n+1)
PR s pe PN, my — N2y N1y T (510

For geometric images, let it be as follows:
S(N)=P°(N)P(N, m). (3.11)

Where S: area, P°: width and P: height. Although P is a discrete distribution, S is
a continuous distribution. It is natural to use point estimation by P and interval
estimation by S, because interval estimation is an original image for a continuous

distribution.

3. Difference and summation
The factorial function is defined as follows:

x =x(x—1)(x—2)+--- (x—r-+1). (3.12)
In addition, the difference is defined as follows:
df(x)—fx+1)—f(x). (3.13)
Then, we get
Ax —(x L 1)) — g
—(xtDxx 1) x—r+2)—x(x—1Dx—2)(x—7r+1)
—rx(x—1)(x—2)---- (x—7r+t2)
Syl (3.14)

On the other hand, The negative factorial function is defined as follows:

(—r) —= _ 1 - - 1
* (x40 7 Dt r De(rt D) (3.15)

Then, we get

e

= 1 1 —_—
(x+r+1) (v

E 1 S P . 1 .
xtr+D@tr-(x+2)  @tn@t+r—1)-(x+1)

-r
(trtDxtr)-(x+2)(x-+1)

——rx(roh (3.14")

Therefore, (3.14) holds when r is negative.
The difference of the product becomes as follows:

g =+ gt+1—f(t)gl)
=fU+DgU+D)—f(OHgt+D+f(H)gt+1)—f()g)



— 30 — T. AKAMINE
={(SU+D—fDgU+D+H/DigU+1D)— g@))
—dfB gD DL g, (3.16)
On the other hand, from (3. 13)
df(@)=fla+1)—f(a),
Af(e+1)=fla+2)—f(a+1),

Af(0)=f(b+1)—1(b).
Summarizing both sides gives the following result:
rijja-/ff(%) —f0+D—f(a).
Let A(x)—4f (x) and J*%{x)LJ;(x). Where, 4-!: summation. Then, we get the sum-

mation formula:

b
Z h(x)=4 pb+1D)—d Wa)

3

—[ 4w T (3.17)
_ 1 . . /
4= 1 o /
And, from (3. 14) 4% il x| (3.14'")
From the difference of the product
Af(DgO=fHgt—D—fHdgt—1),
A gO=47h()g(t—1D)—47/ (D4 gU—1).
Then, we get the ‘summation by parts’ formula:
b b1 b
S b0 g =40 gD, - T 40 gt-1). (3.18)
Therefore, (3.8) is proved as follows:
S poNY— S . METL1 _ariqy S N2
NEM () N§M (N-12)(N+D M+ >N§M
~(MAD[ =N |1
And (3. 9) is proved as follows:
° _(n (mA D (N—M)n—m
i IEDPN ) = (L pey 5 S
Where,
3 gNi,Ml(,n;ml o 3 - n—mY N — ) (—n—2)
N'r-]\;i'nﬁm (N+2>(n+2) N:A;Yn*m <N 114) (N n)
— | — 1 — R (n--m) — G rn1) “
[t N=M- Do N [

n—m S
A N—M—1)n—m—D(N—p)—n—1
razm 5 1)n-mD(N—n)
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The first term of the right side is equal to 0. The result from recursion of this equa-

tion is
n—m n—m—1 1 < o
A A A A A S N—n)—m—=2)
i1 TR R T

‘Where, the last term becomes

oo

[t (an)“mﬂ)} — 1 myem

Tm1 Mtn—m  m—+ 1
-1 1
m+1 (M+1D)m+n
Then,
3 N—M)n— 1 1 - m!(n—m)!
N=M+tn—m N+2)n+D  p+ 1 (MA+1)m+D 7!

Therefore, (3. 9) is proved.

4. A BASIC program

From (2.1) we get the following recurrence formula:

_ (N-M+1(N—n-+1)

Let fAN) be as follows:
f(N)iﬁ(N:MJrl) (N—n-+1)

(N+1D(N—-M—n-+m=+1)

14 Mp—(N+tDm
"N DN M a1 (3. 20)

Then, f(N) is monotone decreasing. In addition,
f(]—‘:;'q”rﬂ)*l. (3.21)
Let No=max (N|N < Mn/m) where N is natural number. The result from
(3.21) is:
max P(N)—P(N,) . (3.22)
In addition, when Ny— M#n/m,
max P(N)=P(Ny)=P(No—1). (3.22")
Therefore, point estimation of N is Nj.

On the other hand, from (3.19)

 NN—M—n+m) ,
P(N— = L P(N, m). .
V=L m=N=mw—m T ™ (5159
A BASIC program using (3. 19) and (3.19) is shown in ‘Program 2’.
[Example 2] Estimate N when M =20, n—=10, m=2.
Point estimation is N—= Mn/m—=100.
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Table 2. Values of hypergeometric distribu-
tions: P(N, m) when M=20, n=10

T. AKAMINE

and m=2.

N P 1S
28 1. 447828 x 107° 3.844232%x107°
42 . 04129029 . 02568505
43 . 04858810 . 03135366
44 . 05631803 . 03763843
45 . 06441605 . 04452099
46 . 07281814 . 05197711
88 . 31116199 . 50152099
98 . 31808012 . 58258717
99 . 31817063 . 58986414
100 . 31817063 . 59699843
101 . 31808432 . 60399229
434 . 06455245 . 98758007
435 . 06430816 . 98765804
436 . 06406522 . 98773536
500 . 99159015

. 05094430

Probability

Fig. 8.

o
T

N
T

.l2 .4 .6 .8 1
I(M+1)/(N+2)(N+1)

The posterior distribution of Example 1.
Each height shows P(N, m), width shows
prior probability and area shows poste-

rior probability.

Interval estimation is as follows: The result of Program 2 is shown in Table 2
and Fig. 8. The 95% interval is N=45 ~ 435. The interval of N is not mini-
mum, because that of p is minimum.
[Example 2'] Estimate 95% confidence interval for the above problem using

the conventional method.

(a) From (1.2), V(n) = 4000, ¢ (n) = 63, N = Mn/m + 20 =100 + 126, then
N=—26 ~ 226.

(b) From (1.3), V(n)=3600, then N=—20 ~ 220.

(c) Letz=+1.96= +2. Then (2. 26) becomes

4=10p—27/10p(1—p)

35p2—20p+1=0
$»=0.286+0.230=0.06, 0.52
Then N=38 ~ 333.

(d) Results of ‘Program 1’ are as follows:
(d-1) Both side 2.5% points are p=0.06, 0.52, then N=38 ~333. This

is in correspondence with (c).

(d-2) The minimum interval (highest density credibility interval) of

pis p=0.04 ~ 0.48, then N=42 ~ 500.

Example 1 and 2 leads to the following conclusion:

(1) For small samples, Program 2 is the best.

(2) For large samples, Program 1 is better, but the conventional method is suffi-

ciently useful.
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e ]

4 5 6

01t 2 8 4 5 6 7 8 9 01 2 3 -1 0 1 2 3 4

Fig. 9. Confidence intervals for P(N, m) when N=44 (left), 436 (right), M=20, =10 and
m=2. A: P(N,m). B: the case for the middle point rule. C: the case for the
trapezoidal rule.

5. Discussion

In Example 2, N=436 is cut off even at P(436,2)=6.4%. It is difficult to estimate
the confidence interval with a discrete distribution. In Fig. 9, two types of confi-
dence intervals are shown for N =44, 436. These appear to suppose the Bayesian
statistical method.
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Appendix

Program 1. An example of BASIC program to culculate a confidence interval
for the PETERSEN method using Bayesian statistics based on bi-
nomial distributions.

K
110 ' Interval estimation for Petersen method

120 ' (Binomial distribution)

130 ' by Tatsuro Akamine

140 ' 1988-08-31
150 ' e -

1000 DEFINT I-N

1010 DEFDBL A-H,0-Z

1020 N2=100 : M2=20

1040 AREA=0#

1050 FOR I=0 TO 100

1060 P1=I/100# : Q1=1#-P1 : Cl=1#

1070 FOR J=0 TO M2-1

1080 C1=C1*(N2-J)/(M2-J)*P1
1090 NEXT J

2000 FOR K=1 TO N2-M2

2010 C1=C1*Q1

2020 NEXT K

2030 AREA=AREA+C1*(N2+1)

2040 PRINT P1, C1, AREA

3000 NEXT I
3010 END
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for the PETERSEN method using Bayesian statistics based on hyper-
geometric distributions.

l

! Interval estimation for Petersen method
! (Hypergeometric distribution)

' by Tatsuro Akamine
! 1988-08-31
'
DEFINT I-N
DEFDBL A-H,0-Z
M1=20 : N2=10 : M2=2
N1=INT(M1*N2/M2)
N9=M1 : M9=M2 : GOSUB *COMBI : C5=C1
N9=N1-M1 : M9=N2-M2 : GOSUB *COMBI : C6=C1
N9=N1 : M9=N2 : GOSUB *COMBI : C7=C1
PROB=C5%C6/C7
AREA=PROB* (M1+1)*(N2+1)/(N1+2)/(N1+1)

PRINT N1,PROB,AREA

BPRO=PROB* (N1-M1+1)*(N1-N2+1)/(N1+1)/(N1-M1-N2+M2+1)
SPRO=PROB*N1* (N1-M1-N2+M2)/(N1-M1)/(N1-N2)
N1S=N1 : N1B=N1

*REPEAT

IF BPRO>SPRO GOTO *RIGHT

*LEFT

N1S=N1S-1

N159=N1S : SPRO9=SPRO

AREAS=SPRO* (M1+1)*(N2+1)/(N1S+2)/(N1S+1)
AREA=AREA+AREAS

SPRO=SPRO*N1S* (N1S-M1-N2+M2)/(N1S-M1)/(N1S-N2)
GOTO *CHECK

*RIGHT

N1B=N1B+1

N1B9=N1B : BPRO9=BPRO

AREAB=BPRO* (M1+1)*(N2+1)/(N1B+2)/(N1B+1)
AREA=AREA+AREAB

BPRO=BPRO* (N1B-M1+1)*(N1B-N2+1)/(N1B+1)/(N1B-M1-N2+M2+1)
*CHECK

IF AREA<.95# GOTO *REPEAT

PRINT N1S9,SPRO9,AREAS

PRINT N1B9,BPRO9,AREAB

PRINT AREA

END

*COMBI

Cl=14#

FOR I=0 TO M9-1

C1=C1*(N9-I)/(M9-T)
NEXT I
RETURN



