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An Interval Estimation for Extraction using Bayesian Statistics

Tatsuro AKAMINED

Abstract

The statistical model for extraction is a binomial distribution. The conventional
method for employing this binomial model is based on approximation to a normal distribu-
tion. The Bayesian statistical method, which assumes that the prior distribution of para-
meter is uniform, is preferable to the conventional method, and two theorems demonstrate
that this model corresponds well with the conventional method. Furthermore, this model
is simpler to understand and easier to calculate by micro-computer than the conventional
method.

Key words Bayesian statistics, extraction, binomial distribution, normal distribution,

uniform distribution
Introduction

Extraction is the simplest method to estimate total number. Let n: total number
of individuals to estimate, 7: number of extracted individuals and p: extract ratio
(Fig. 1). Although the binomial distribution gives » when # and p are fixed, in this
problem, we require #» when 7 and p are fixed. AkKAMINE (1981)approached this prob-
lem graphically, but he depended on the conventional method.

The prior distribution of #, which

is a uniform distribution, provides the ° o © . ° hd .
simplest method to estimate a confi- ° ° o
dence interval for »#. First, two impor- o
tant theorems for binomial distribu- ° o * o
tions will be proven. Next, the Baye- ° LI .°
sian statistical method according to the o . d °. .

above theorems will be demonstrated. ® ® n
This method is more logical and sim- Fig. 1. The image of extraction (p=r/n).

pler than, and corresponds with, the
conventional method.
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Theorems for a binomial distribution

The binomial theorem
The binomial distribution is expressed as follows:

Pn, r) = f ;l >p’(1"*", ptqg-1. (2.1)
Where the binomial coefficient (number of combinations):
n\ n' (1) (n—r+1) o
( 7’> T rtme-n)! r(r-——1)----- 1 : (2.2)
The binomial theorem is as follows:
n
> P, r) 1. (2.3)
r--0
The proof of this theorem is quite simple. The binomial expansion:
(/)+q)11 _;( g)p()qn_F(;il)plqn* 1 foeeeenn |,<Z>pnq()
1 (2.4)

is the proof as well as the definition of the binomial distribution.

Theorem 1
The arrangement of P(n, r) is shown in Table 1. The binomial theorem gives

the total sum of the row. The following theorem gives the total sum of the column.

[Theorem 1]
For any 7, the following expression holds.

Sr ”'Z:rl’(lz, r) []) . (2.5)
[ Proof |
First, the convergence of Sy is demonstrated.
Pn+1,r) n+1l ¢
P 1) q ner il (o) /. (2.6)

Then, the ratio test certifies the convergence of this series.

Next, the convergence value is required. From (2.6)

Pinil ) n+l 0 - 9 6
(ntl,r) =g 7P ) (2.6")

From recursion of this equation,
Y PN PR e | ¥ 2 o '\}

Sr= P, {1+ " (1(1+ , ,(1<1+ />
1 (r+1)(r+2)

Spfre Tl a

1! A

(") (2.7)

l

On the other hand, the binomial coefficient can be expanded to include negative
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numbers as follows:

<— n>: (—n)(—n—1)- (—n—r+1)
7 r(r_]_) ...... 1
= (0", a0, (2.8)
Therefore, the binomial theorem can be expanded to include negative numbers
as follows:
A-g1=(" T oo (T T (ot e
(7 7 +1 r+2N\ o .
=(o)+("1t)e+(7 et
_ & (r+iN
BT 2
Then, from (2.7) and (2. 9) the result is:
Sr=pr(1—q)~7"1=1/p. [Q.E.D.]

[Another proof]
So is a geometrical series by ratio ¢. Then, Sy is simply given as follows:

So=1/(1—q)=1/p. (2.10)
Binomial coefficients have the following formula:
n n—1 n—1
(M =0=)+("h. (2.11)
The following formula for P(n, r) is obtained from this formula.
P(n, r)=pP(n—1,r—1)+qPn—1, r). (2.12)
From this equation,
Hwﬂm@Dz%Hmﬂ—%Pm—Lﬂ. (2.12")
Where,
1_49 4 (2.13) . =
b p (@) q
Therefore, Fig. 2 illustrates the follow- P
ing equation: © o Sra I.:\'@
Sr_1:Sr (2 14) O O . F @
(2.5) is proved by (2.10) and (2. 14). O O e ..@sr
3. A BASIC program © O .:© o
For (2.6") let f(#) be the following: O O @e<® O O
AN
Fy=q- 1T O O @8<® 0 O O
n—r+1 ~
(0]
=q(1+ " ). 21 yO © ®*® 0 0 o0 o

n—r+1 . . .
. . Fig. 2. The illustration for the arrange-
Then, f(n) is monotone decreasing. In ment of binomial distributions to

addition, prove the Theorem 1.
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f(; 771>T 1 r/rlfér ,—:m]f_]/) -1

(2.16)

Let no=max{n|n < r/p), where n is a natural number. The result from (2. 16) is:

max P(n) —P(ny).

In addition to, when ny=7r/p,
max P(n) =P(ny) = P(ny—1).

Therefore, point estimation of » is #,.
From (2.6")

Pn—1, rp}{ ”;!” Pn, 7).

(2.17)

(2.17"

(2.6

An example of BASIC programs is shown in ‘Program 1.’ This program calculates

P(n, r) by (2.6") and (2.6"").

4. Theorem 2

In Table 1, the percent points for rows correspond with that of columns.
rem 2 gives this relation.

[Theorem 2]

For any =, 7, the [ollowing equation holds.

n—1 n
P2 PG = 2% Pn,j)
i=r joril

[Proof]

Fig. 3—a gives this proof. Let
r4-k—

k k
G=""2 Pl = T PO D ey

rik k k
Ri= 2 POtk )= X Poikrii)= 37,
J 1=

j=rtl
The following equation is obvious.

Table 1. The arrangement of binomial coefficients :

P(n, r) i( f ) prgnr.

r
|
[V} 1 2 3 4 5 6
| 0 1
i 1 q b
P2 ¢ 2pq p*
-3 | ¢ 3pq* 3p%q p*
L q' 4pg® 6% 4p%q P
j 5 i ¢ 5pq’ 10p2%¢4* 10p%¢* 5ptq p°
6 ‘ q 6pq° 15p%¢* 20p°¢° 15p"¢* 6p°q p°
7
i

7 74° 21p%®  35p%¢"  35p'g* 21p°¢° 7%

Theo-

(2.18)

(2.19)

(2.20)

p7
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pCi=R;. (2.21)
If PCe=Rr,
From (2.19) Cr+1=Cr+cr+1,
From Fig. 3-a Rr+1=Rr+pcr+1 . p+a=1.
Then, pCr+1=Rp+1.
Therefore, Theorem 2 is proved. [Q.E.D.]
r _ r =
O o]
G Ck
. S o1[@] ®
o lorYelr, AY N AN
Vo 02|0| © o
ol o o ¥\
n nl O3/0] @ ®
o|ojo o o IASAY
O40| @ ©®@ @
« [0 0 O o © ANAN
ot :_(?'\© ° o o] R, 052 O @\? O
o o .Effi.f??%f-\;, Ruut O 0|0 0O @ O OfR
ettt - 1 2 3 4 5
y O O 0O OO 0O O 0O 0o v 0O O 0O O O OO o
Fig. 3-a. The illustration for the arrange- Fig. 3-b. The illustration for the arrange-
ment of binomial distributions to ment of binomal distributions to
prove the Theorem 2. prove the Theorem 2 by the other

way.

[Another proof]
Fig. 3-b gives this proof. The contribution of ¢; to 73 is

(%) pe.
Then, the total contribution of ¢; to R is
p{(§)a+ (4) gt (§) p } =2+ 1=,
Similarly, the contribution of the other ¢i to R is p, then
pPCr=Rr. [Q.E.D.]

Estimation for a confidence interval

1. Bayesian statistical method
Bayesian statistical method is as follows: Let #: parameter to estimate, #: data,
P(0, t): probability of data for each 0. P° (f): prior distribution of . Where,

2 Po(d)=1. @E.1)

Let P*(0) : posterior distribution of . Then
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__ _P°O)P, D)
P*(0)= S PP, 1) " (3.2)

Where,
> PRO)=1. (3.3)

In particular, the prior distribution of 6 is a uniform distribution:
P°(0) = e=const. 3.4)
The posterior distribution becomes as follows:

__ P01
P*0) =555 77 (3.5)

In this case, the prior distribution of # is the uniform distribution from 7 to co. It is
better to regard this as follows: The prior distribution of # is the uniform distribu-

tion from 7 to ;. Then,
P°(n) =e=1/N, N=n—r+1. 3.6)
Therefore, the posterior distribution is (3.5). Next, let #; — co. Then the posterior
distribution is
P*(n)=pP(n, r). 3E.7
[Example 1] Estimate » when p=0.2 and r=20.

Point estimation is n=7/p=100.
Interval estimation is as follows: The result of Program 1 is shown in Table 2

Table 2. Values of binomial distributions:
P(n, r) when p=0.2 and r=20.

n P 2P
.12 20 1. 048576 x 107 1. 048576 <1074
af 65 . 01294324 . 07890761
66 . 01485659 . 09376420
o 67 . 01694284 . 11070703
S 68 .01920188 . 12990892
[
E o i 98 . 09904946 2.10339186
99 . 09930021 2. 20269208
-02 100 . 09930021 2. 30199229
) 101 . 09905503 2.40104732
i 20 40 80 80 100 120 140 180 180 200
Parameter (n) 144 . 01527861 4. 82707068
145 . 01417855 4. 84124923
Fig. 4. The graph of P(n, r) when p=0.2 and
r—20. 146 . 01314329 4. 86656300
147 . 01217048 4. 87782069
149 . 01040246 4. 88822315
200 . 00006090 4.99953125
[eS) . 00000000 5

. 00000000
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and Fig. 4. The 95% confidence interval is =66 ~ 145. Length for the inter-
val of # is the minimum.

2. The conventional method
The non-Bayesian statistical method is as follows: When # — oo, a binomial
distribution approaches to a normal distribution with p=#np and e=v'npg. Let z be
as follows:
z:%—%, p+a=1. 3.8)
Then z distributes according to the standardized normal distribution N(0, 1). The
confidence interval is easily obtained (ex. 95% confidence interval is —1.96<2=1.96).
From (3. 8)

=7 a
n=ttz «/ R (3.9)
Let p of the last term be fixed. Then we obtain the rough estimator as variance of
n:

V(n)=02(n>=%:ﬂlp%pl. (3.10)

The rough 95% confidence interval is given by 7/p+2a.
[Example 1'] Estimate » when p=0.2 and »=20.
Point estimation is n=7/p=100.

Interval estimation is as follows:

Let z=41.96 ==+2. Then (3. 8) squared becomes
4=(0.27—20)2/0.16
16 n= (n—100)2
7n2—216 n+10000=0
n=108+40.8=67.2, 148.8

Then #=67 ~ 149. If z= +1.96, then =68 ~ 148. These results are larger than
for the interval and are shifted to large side of # from those obtaines with the

Bayesian statistical method.

J p=l

3. Relation between the Bayesian statis- ’ P

. . 2.5% | S 2.5% n=r

tical method and the conventional o :

method. .

Fig. 5, which is an inverse of Table
1 for the ordinate, shows an image of (7, 0%
n) coordinates. The Bayesian statistical S S
model is along the ordinate in Fig. 5 and 0 : >

-

he conventional model is along the ab-
the t g Fig. 5. The image of (7, #) coordinates.

scissa. Theorem 2 proves that the per-
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cent points for the ordinate correspond
with those for the abscissa. Although the
distribution for the abscissa is almost
symmetric, that for the ordinate is not.
Therefore, the confidence interval of the
conventional method is larger than and
shifted to the large side of # from that of
the Bayesian statistical method (Fig. 6).
The difference of results from both meth-

Probability

Parameter
od is not so large. However, the conven-  pig. 6. The comparison of the confidence in-

tional method is difficult to obtain the terval for Bayesian statistical method
(A) and that for the conventional

strict solution using the binomial distri- method (B).

bution itself. The method presented in
this paper based on Bayesian statistics is simpler, easier and more logical than the

conventional method.
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Appendix

Program 1. An example of BASIC programs to calculate a confidence interval

100

110

120

130

140

150

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
2000
2010
2020
2030
2040
3000
3010
3020
3030
3040
3050
3060
4000
4010
4020
4030
4040
4050
5000
5010
5020
5030
5040
5050

for extraction using Bayesian statistics.

Interval estimation for Extraction
(Binomial distribution)
by Tatsuro Akamine
1988-08-31

DEFINT I-N
DEFDBL A-H,0-%
P1=.2# : IR1=20
N1=INT(IR1/P1) : Q1=1#-P1
Cl=14
FOR I=0 TO IR1-1
C1=C1*(N1-I)/(IR1-I)*P1

NEXT I
FOR J=1 TO N1-IR1 : C1=C1*Q1 : NEXT J
PROB=C1 : AREA=C1*P1
PRINT N1,PROB,AREA
BPRO=PROB*Q1*(N1+1)/(N1-IR1+1)
SPRO=PROB* (N1-IR1)/0Q1/N1
N1S=N1 : N1B=N1

*REPEAT

IF BPRO>SPRO GOTO *RIGHT
*LEFT

N1S=N1S-1

N1S9=N1S : SPRO9=SPRO
AREAS=SPRO*P1

AREA=AREA+AREAS

SPRO=SPRO* (N1S-IR1)/Q1/N1S
GOTO *CHECK

*RIGHT

N1B=N1B+1

N1B9=N1B : BPRO9=BPRO
AREAB=BPRO*P1

AREA=AREA+AREAB

BPRO=BPRO*Q1* (N1B+1)/(N1B-IR1+1)
*CHECK

IF AREA<.95# GOTO *REPEAT
PRINT N1S9,SPRO9,AREAS

PRINT N1B9,BPRO9,AREAB

PRINT AREA

END



