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An Interval Estimation of LESLIE's Method in Removal Methods

Tatsuro AKAMINED

Abstract

Lestie’s method in removal methods is modeled into the joint of the binomial distribu-
tions. An interval estimation of p (removal ratio) and » (initial population size) based on
the null hypothesis for p and # is easily obtained by the approximation of each binomial
distribution to the normal distribution. The confidence region on the (p, #) plane is easily
obtained by micro-computers. The maximum likelihood method for a point estimation
and the convenicent method on the curves of partial maximum likelihood for an interval

estimation are also presented.

Key words LesLie’s method, DELURY’s method, removal method, binomial distribution,

normal distribution, interval estimation

Introduction

Lesiie’s method in removal methods is wellknown by scientists of population
dynamics. SeBER (1982) said that this problem was first studied by LesLiE and Davis
in 1939 and DeLury in 1947. This method is based on the linear regression model.
This model is useful only for a point estimation, but not for an interval estimation.
The probability model for this method is the joint of binomial distributions or the
multinomial distribution. SeBer (1982) introduced many studies about this model,
but almost all of them are not useful for interval estimations of p (removal ratio)
and # (initial population size).

Although ScunuTe (1983) presented a likelihood ratio test for an interval estima-
tion of this model, his model was not useful and his estimating method was not
adequate. The reason is that his model is a special model in which all sampling ef-
forts are equal, and his method gives no attention to the degree of freedom of y2
distribution and the number of data.

The approximation of each binomial distribution to the normal distribution
seems to be the best method for this problem. In this paper, we present this ap-
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proximation method on the (p, #) plane and its convenient method on the curves of
partial muximum likelihood for an interval estimation, the maximum likelihood
method for a point estimation, and the consideration of the Bayesian statistical
method based on the uniform prior distribution.

LESLIE’s method

LesLie’s method is a regression model. Let
n :initial population size,
pi : removal ratio of i th sample,
ri @ size of i th sample removed from the population.
LEsLIE’s method is as follows :
Generally, the following equation is supported for each removal sampling.
E nipi)=ri, ni—n—Ri,. (1.1)

Where Ri=13 7.
k=1

E (0) : expected value of 4.
LesLiE’s method is characterized by the next equation.
pi==xip. (1. 2)
xi © units of effort expended on the i th sample.
Substituting (1. 2) into (1. 1) leads to the next equation.

B 4 )=np—pRi 1. (1.3)

Let y—r;/x:, x—Ri—;, then we get the regression model so called “LEsLit’s method”
or “DeLurY’s method”.

This method has been used widely because point estimators of p and » can be
easily obtained. However, it is difficult to obtain interval estimators of p and n.
For example, when the number of data is only 2, this regression method has no in-
terval of p and #.

When one of p and # is fixed, we can estimate the other exactly by the Bayesian
statistical method (AxkamINE 1989a, 1989b), and the confidence interval of the pa-
rameter is not so wide. But in obtaining p and » simultaneously, confidence intervals
of both parameter are wide. In that case the interval estimation is much more im-
portant than the point estimation. Therefore, we must use the model based on the

binomial distribution mentioned in the next chapters.
The joint model of the binomial distributions
1. Model

It is widely known that LesLIE’s method, the joint of the binomial distribution

model, is as follows : The probability of the 7 th sample 7; is according to the bino-
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mial distribution :

n—Ri _
P; .,( piri(1—piyn—Ri, (2.1)
7i
Where [ |- nt  a® (2.2)
ere ) rte—nt ot '

n=nn-—1)-m-rt+l),
nl=nm,

Therefore, the total probability called “likelihood” is defined as follows :

m

x (1 41)1);1—1?1 ...... (lfpm)n"l?m. (2 3)

Where m : number of sampling (number of data).
This is equal to the multinomial distribution :

n(Rm)

| . Sl’l ...... Smrmin ~Rm, (2. 4)
Vysrerees Ym!

IJ,

m

Where ¢t =1—-2X s,
-1

i—1 m
si=pill (I—pr), t =11 (1—pr). (2.5)
k=1 k=1

The next equation is necessary for LESLIE’s method.
pi—xip (1.2)
For (2. 3) and (2. 4) without (1. 2), the next expression holds.
n o n—R, n—Rm— W
S():,,Z-L»(rzz—-.o(\ ...... < r’r§0 L> ...... ))
n- R, de Rt -
( Pr) (2.6)

vorm=0

This equation can also be rewritten as follows :

So=XL=1, D: X r<n (2.7)
D =1

2. Maximum likelihood estimation
The estimators of (p, n) are easily obtained by the maximum likelihood method.
These are obtained by the following simultaneous equations.

oL
o =0, (2.8)
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Fig. 1. The image of the confidence region on the (p, n)

plane. The bent ellipse is the confidence region
which is exaggerated.
A : The curve of 0L/0p=0. B : The curve of
0L/on=0. C : The crossing point of A and B
which means the point estimator of the maxi-
mun likelihood method.

0

aﬁ =0. 2.9)
These equations are curves of partial maximum likelihood in Fig. 1. The intersec-
tion point of these curves is the maximun likelihood which is the estimator of (p, #).
Fig. 1 also shows the cofidence region which is exaggerated for explanation purposes.
The real confidence region is much narrower (see Fig. 2). Furthermore, these curves
are so close that the precision of estimators (coordinate of intersection point) is law.
Namely, the condition of this model is so bad, then we need an interval estimation
and not a point estimation.

L is defined by (2. 3) and (1. 2) for LesLIE’s method. From (2. 8),

Rm

1221 pr— +1 +Z log(1—=xip)=0. (2.10)
From (2. 9),
Rm szz m Xi )
" ( b +i§1 1—xip >/,Z=1 1—xip ~ . 11)
Substitute (2. 11) into (2. 10), then we get
f(p= El H—l —I—Z log(l xip). 2.12)

This equation can be solved easily.



An Interval Estimation of LEsLie’s Method — 31 —

In this paper, NEwToN’s method is applied. Let n—=A/B, where A is the de-
nominator and B is the numerator of (2. 11). Therefore, we get

o B 1 B
= =" B vy P @1

Where n. A B

n A B’
y Rm n sz
» TE (0 kipy
m .2
B = ST
izzfl (1—x:p)?

NewToN’s method corrects p step by step using the following expression :

p—— 1

/e (2.14)

The initial value of p is searched for using the BASIC program in the appendix. An
example of the BASIC program of NEwTON’s method is also shown in the appendix.

In practice, calculations of X in (2. 12) and (2. 13) take a long time. Then we
use “EULER-MACLAURIN expansion” as follows :

S@)bf@t-hyt- +/ (atnh)
1, ) 1 b :
SRR AU RS WEOL:

+l/12 F(b)—F (@) — h [F® (D) FO (g)) -nemr .

720
Where b—=a }-nh. (2.15)
Therefore,
b
1171 01N feod 1o
x ! 772( + b) (logb —loga)
1/ 1 1 1 71 1N, ... .
12(7 b2 a? >+ 120< bt at > (2.16)
b
1 1/1 , 1)\ /1 1
‘); %2 2<a2’~bi) <b a>
1/ 1 1N, 1710 1 N
6< h3 ad ) +30< bo a® > (2.17)

[Example 1] ScHNUTE’s data

x—(1, 1, 1), r=(90, 60, 40). Original (p, n) is (1/3, 270). Let initial value of p be
0.5, and use the BASIC program in the appendix. Then we get estimators (p, n)—
(0. 341807, 265. 255).

Although this solution has bias, that is a general property of the maximum
likelihood estimation. If the original value of 7z is known, the estimator of p has no
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bias. Let x;=1 in (2. 11), then we get

1_ mn— YR

» =1+ o . (2.18)
Substituting data of example 1 into this equation we get the original value of p as
follows :

1 3x270—(3x90--2x60+40) _

» =1+ 190 =3

This case is the same as the next famous example : The estimators of normal
ditribution N (g, ¢2) by the maximum likelihood method are

T[?;: PR 3¢ S (a), PEEDNC DS, (h).

Although these estimators have no bias, (b) is impossible to use because the original
value of g is unknown. Therefore, we often substitute (a) into ¢ of (b). Then we
get (c) as an estimator by the maximum likelihood method.
g BO—XP ) pe DR ).
m m-—1

But (c¢) has bias when m (number of data)-+co. The estimator which has no bias is
(d) called “unbiased variance”.

This is a weak point of the maximum likelihood method. However, an interval
estimation is more important than a point estimation for LEsLit’s method which has
a large confidence region. Therefore, unbiased estimators are not treated in this

paper.

3. Existence of the solution
There is no solution of the estimator (p, #) for the maximum likelihood method

in the case of the binomial distribution model :

nr)

Plf R j)r(l j))n —7, (2 19)

Where data is . This is obvious because the number of estimators is 2 and the
number of data is 1. Let’s explain this by the following equations :

OPy/on=0, 0P;/0p-—0 leads

5o B
I —z+1 +log(1—p)=0, (2. 20)

T (2.21)
n

>

Substituting (2. 21) into (2. 20) we get

B r 1 _7777\
f(n)—;:l?;—irl—n%og(l ) (2.22)
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But this equation has no solution because f (7)<0 as follows :

L1 O U I SN
) 5z A< lar—tog

s n—i+1l T r

-~ log(1-1). (2.23)

This is the same as the multinomial distribution model (2. 3). Where data are
ri~¥m. OL/Oon=0, 0L/0pi=0 (i=1~m) leads

an zgl n' i‘i’” 1 I'Z:,;l l g(l pl)’ ( ) )
R v S~ 2.2
pi—= R:. . . (l—l 7%). ( . 5)

Substituting (2. 25) into (2. 24) we get

IR | R
fa=3 -t tiog(1- L), (2. 26)

This equation has no solution because f(7)<0 too. This is obvious because the num-
ber of estimators (p, n) is (m+1) and the number of data is m. LESLIE’s method
decreases the number of estimators to 2 by (1. 2). Then it is possible to obtain the

solution for LESLIE’S method.
An approach to the Bayesian statistical method

In this chapter, we will consider the Bayesian statistical method for an interval
estimation. It is natural to let the prior distribution of (p, ) be the uniform distri-
bution (0<<p=1, Rmn=n=o0), the same as AkKaMINE (1989a, 1989b). Calculating the

posterior distribution we get the following results :

1. General removal method
It is necessary for the posterior distribution to sum the likelihood on the (p, n)
plane. The next expressions are essential for this calculation. For (2. 1) and (2. 3),

I, 1)~ 1 =nn, (3.1)

1

0
1 1

I(n, m);,—g() ...... S LJjdp,----- dpm

1 i
Ty M (3.2)

Where J : Jacobian.
From these we get the next sum.

Si= % I D=co, (3.3)
5 _ Rp(mtD
SmfrﬁZ}Rm[(n, m)—A—-;;L--il—f—<00. 3.4)
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These results are not affected by the rearrangement of the order of p and # to in-
tegrate as follows :

z(\Sm;;) f'S(ZP)dp. (3.5)

(3. 3) shows that it is impossible to calculate the posterior distribution. How-
ever, (3. 4) does not show that it is possible. Because point estimators cannot exist as
shown in chapter 2. (3. 1) and (3. 2) only show that the Bayesian statistical model
is possible when # is known as AKAMINE (1989h).

(3. 2) is rewritten for the multinomial distribution (2. 4).

I(n, m):'fg ~~~~~~ f2dseodsm=ncom, (3.6)
D

Where D : 0<s;, > si<1.
This equation is equal to the definition of the multi beta function (DiriCHLET’S in-

tegration). In this paper, the proof of (3. 6) by the change of variables (2. 5) is
presented. First, let’s calculate the Jacobian :

sy sy ‘
P Opm |
: |
. 8(731, """ [} Sm) - ‘
] a(ply """ ,p”’l) ‘
Osm s
apy Opm |
\
|
\ 1
 —py (=py) 0
----- 1 po(I—=pm—y) ‘
(L=pyy =YL —pgyn=2eeeee (1= pm—1)>0. (3.7)

On the other hand, the region of integration changes as follows : From D of (3. 6),
si=—1—¢ =<1.
This leads to
[ (1 —=py)--- (1 pm)=0.
And s;=0. Then D becomes
0<p; <1 (i=1~m). (3.8)
Therefore, the integration of (3. 6) is obtained as follows :

e S W AT e

1
0
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= e 1§ pr—por R,
...... S; Dpr™(1— pm)n=Rmd py,
_ ,r,l,!?_i_(.’f’.”_’;r;! B(n+1, n—R,+m)
...... B(rm+1, n—Rm+1)
Gt

Where the next formular of the beta function is used.

(. 1. L(@I'(b)
= a—1 b—1 — ANV
Ba, b) SO xe (1 idre @
(@—DHb—D!
T (atb—1)! (3.9)
In the m th dimensional space of (py, -+---- , pm), equation (1. 2) is a line as follows :
X1
pg( )p (3.10)
\ Xm

2. LEsLIE’s method

LEsLIE’s method is characterized by the equation (1. 2). It is impossible for this
model to bea Bayesian statistical model, the same as the binomial distribution model
(3. 3). First, the special case of xi=1 is shown as follows : In this case, (2. 3) becomes
n(Rm)

7yl Tm! ”pRm<1*p)mnﬁZRi' (3 11)

L=
The integration of the terms for p by using (3. 9) leads to

S(I) pRm(l, p)mn* ZRid[)

— Rallmn—3Ri]!
 [mn— X Ri+Rnt+17! -~ (3.12)
Then the integration of (3. 11) is

1 - n(Rm) . a 1
S(, Ldp=a— 0 pyrmi v = g RmFT (3.13)
Where a, b : const.
This equation leads to

Sk= 3 Sl Ldp—co. (3.14)

r=Rm Y0
(3. 14) holds in the general case as xi#1. The simplest case such as the next one

is enough to explain this. Let

1=, pe1—pra—sp)edp. (3.15)
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Where 0<x=1.
On the other hand,

1-xp—(1—2)+x(l--p) (3.16)

Substituting (3. 16) into (3. 15) we get
1) patpredp e pet - pyoveds. (3.17)

This equation proves that (3. 14) holds in general. Therefore, it is difficult to make
Bayesian statistical models based on the hypothesis that the prior distributions of p
and n are both uniform distributions.
Generally, the next hypothesis are used to let Sp*< oo,

a) n=No.

b) The prior distribution of # is not the uniform distribution.
But these hypothesis seem to be difficult to match with AxkamMiNg (1989a, 1989h)’s
model. In this paper, the Bayesian statistical method is not used for an interval

estimation.
Interval estimation

For an interval estimation, it is important to set a null hypothesis. In this model,
the next hypothesis is natural.

[I(} L n—ny and p=ho. (4 1)

Tanaka (1985) had already shown the confidence region of (p, 1) for the similar
model with LesLiE’s method. Although the confidence region of the other parameter
(s=e M yu)was a bent ellipse, that of (p, #n) was a complete ellipse and not a bent
ellipse in his result.

1. The approximation to the normal distribution

LEsLIE’s method is expressed as the joint of the binomial distributions. It is
widely known by the “DE MoirvkRE-LAPLACE theorem” that when n->co, the binomial
distribution will be approximately equal to the normal distribution. In practice,
this approximation is useful when #>30, np>5, and n(1—p)>5. Therefore, for our
purposes this approximation is useful because # is usually large in our sampling.

In using this theorem for (2. 3), we get

w

L=11 Nnipi, nipiqi)- 4.2)
Where n; =n—R;-.y, ¢i=1—p;.
The next expression is important for LEsLIE’s method.
pi=xip. (12)

For each normal distribution in (4. 2), the confidence interval is easily obtained by
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the next inequality.

ri—-npi
VvV onipil—pi)

W‘\

2. (4.3)

Where zis 1. 96 (95%) or 2.58 (99%).
Let p;—x, n;->y and r;->r. Then (4. 3) is rewritten as follows :

(r—yx)? = z2yx(1-x). (4.4)
Let

Sy v) = (r—-yx)? - 22yx(1l--x)
= x2y2x(zix—22 - 2r)yF =0, (4.5)

The solution of this equation for y is as follows :

—bty D

Vo=
2x

(4.6)

Where b z2x—z2—2r,
D—zx—1){x—(1+4r/z%)} =0.
These are two curves. Draw them for each normal distribution on the (p, n) plane,
and we get the confidence region. The product spacc of all confidence regions gives
the interval estimation of p and # which means that all normal distributions of (4. 2)
satisfy null hupothesis (4. 1). The BASIC program in the appendix gives values of
(4. 6).

Let’s consider the convenient method in this way. Either (2.8) or (2.9) is a
curve which gives maximum value of likelihood L viewed from one direction. In
this model, the concrete expressicn of (2.8) is (2.10) and that of (2.9) is (2. 11).
Although (2. 11) is an explicit function for #n, (2. 10) is not. Therefore, using (2. 11)
it is easier to calculate n than in using (2. 10). On the other hand, (2.10) gives
maximun and minimum values of p in the confidence region while (2. 11) gives those
of n (see Fig. 1). The main purpose of LesLIE’s method is to estimate # rather than
p. Therefore, it is better to use (2. 11) for estimation in this paper. For each normal
distribution, the next function of p gives the confidence region of # on the (2. 11)
curve.

o Ty
zZi - ‘/ 721'1)1'(1' ])1) . (47)
Where »; is given by (2. 11), pi=x:p.
It is anticipated that the result of (4. 7) will be almost equal to (4. 6). An example
of the BASIC program for this method is shown in the appendix.

2. Likelihood ratio test

(3. 14) shows that it is impossible to estimate the confidence region by the super-
ficial content under the likelihood curve which means probability. Then it is natural
to use the height of likelihood curve which means probability density instead of the
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superficial content. The most popular approach is the likelihood ratio test. This

test is based on the next theorem:.

[Theorem] The likelihood ratio is defined as the next expression.

max

max
4 “Hi-w L /////(»7__(_)14. (4.8)

Where w( £, £ : parameter space.
When m (number of data)—>co, —2logd ~ y%k—s). Where k is the

number of parameters of £, and s is the number of parameters of w.

The condition of # (numker of data) is the biggest problem when using LESLIE’s
method. Although this test requires m to be large, m is usually small in our sam-
pling. Thercfore, we must consider the real distribution of 4 in this case. However,
this problem is not treated in this paper.

The null hypothesis is (4. 1) in this paper. On the other hand, ScunuTE (1983)
used the next hypothesis.

[[() L n—Hy. (4 9)

Then he used the value of 2 (1). Namely, he cstimated only on the (2. 11) curve.
In this paper, we estimate on the whole (p, #) plane, and use the (2. 11) curve only
for convenicnce. Therefore, we must use the value of y2 (2).

For calculation of L in (2. 3), the next expression called “STIRLING’S formula” is
useful.

log(n!)= 5 log (27) 1 <n+ %) logn—n + lén . (4.10)

This is the first part of the asymptotic expansion called “EuLErR-MACLAURIN expan-

sion” which is as follows :

1 | 1
y (! - )+ - - o
10& (ﬂ. ) p log (2 ) <1’l4 9 > logn 7 1 on
S (4.11)

36073 | 126015 1680n7

The precision of (4. 10) is enough for our calculation. An example of the BASIC
program is shown in the appendix.

3. Numecrical experiments

The artificial data for the experiment is shown in Table 1. Data-1 has no error,
data-2 has small error, and data-3 has large error. For point estimation, program
B in the appendix is used. For interval estimation, program C and D arc used. For

comparison, program E for the likclihood ratio test is uscd.
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Table 1-a. The artificial data for the
experiment (data-1).

i n ) ) R®

1 10000 0.07 700 700
2 9300 0. 05 465 1165
3 8835 0.10 884 2049
4 7951 0.03 636 2685
5

7315 0.04 293 2978

Table 1-b. Continued (data-2).

i 7 b np \/ ni)([ ¢ 3 R?
1 10000 0.07 700 25.5 0.7 718 718
2 9282 0.05 464 21.0 0.6 477 1195
3 8805 0.10 881 28.2 -0.9 856 2051
4 7949 0.08 635 24.2 0.0 636 2687
5

7313 0.04 293 16.8 -0.1 291 2978

Table 1-¢c. Continued (data-3).

i n b np Y ¢ Al R?
1 10000 0.07 700 25.5 1.4 736 736
2 9264 0. 05 463 21.0 1.2 488 1224
3 8776 0.10 878 28.1 -1.8 827 2051
4 7949 0.08 736 24.2 0.0 636 2687
5 7313 0.04 293 16.8 -0.2 290 2977

1) r=np. 2) R=>\r. 3) r=np+es npq-

[Example 2] Data-1

The result of the maximum likelihood method is (p, n)=(. 01003895, 9968. 41).
On the other hand, the result of the regression method is ( p, n)=(. 00997327, 10026. 07)
and r=-.999994. The confidence regions are shown in Fig. 2a and 2b. Fig. 2a shows
the interval estimation (95%) is ( p, n)={(. 0042, 22026)~(. 0156, 6974), and Fig. 2b shows
p=.0044~.0152. Because data-1 has no error, the point estimator is natural for all
samplings. On the other hand, the result of the likelihood ratio test is ( p, #)=(. 0057,
16611)~(. 0143, 7411).

[Example 3] Data-2

The result of the maximum likelihood method is ( p, n)=(. 01107396, 9161. 77).
On the other hand, the result of the regression method is ( p, n)=(. 01114463, 9151. 39)
and r—-.989140. The confidence regions are shown in Fig. 2cand 2d. Fig. 2c shows
the interval estimation (95%) is ( p, n)=(. 0053, 18034)~(. 0164, 6701), and Fig. 2d shows
p=.0063~.0156. The point estimator is not natural for the 3rd sampling. On the
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Initial size (n)

8.5 005 o 015

Removal ratio (o)

Fig. 2-a. The confidence region for data-1 on the (p, #) plane by
the method based on the approximation to the normal
distribution. Circles are original value (.01, 10000) and
the point estimator by the maximum likelihood method.
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Fig. 2-b. The confidence interval of p for data-1 on the 0L/0p=0
curve by the convenient method based on the approxima-
tion to the normal distribution.

other hand, the result of the likelihood ratio test is (p, n)=(. 0068, 14134)~(. 0152,
7014).

[Example 4] Data-3
The result of the maximum likelihood method is (p, #)=(. 01202092, 8543.93).

On the other hand, the result of the regression method is (p, #)=(. 01225645, 8477. 77)
and r=-.964732. The confidence regions are shown in Fig. 2e and 2f. Fig. 2e
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Initial size (n)
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Fig. 2-c. Continued (data-2).
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Fig. 2-d. Continued (data-2).

shows the interval estimation (95%) is (p, n)=(. 0080, 12210)~(. 0158, 6836), and Fig.
2f shows p=.0083~.0148. Although the confidence interval of 95% involves the
point estimator, that of 90% does not exist because the value of z; is too large. In
practice, this case seems to occur many times because by sampling error. On the
other hand, the result of the likelihood ratio test is (p, #)=(. (77, 12632)~(. 0161,

6697).

4. Consideration
For a point estimator, both the maximum likelihood method and the regression

method presents a good value in practice. However, the former method has a bias.
On the other hand, the latter method is difficult to estimate a confidence interval,
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Fig. 2-e. Continued (data-3).
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Fig. 2-f. Continued (data-3).

and correlation coefficient » does not mean any condition of the model and data.

The confidence region of (4. 3) is different from the confidence region of the
likelihood ratio test given by J. NEYymMAN. The former means the region in which
we get r (data) in some probability. On the other hand, the latter means the region
in which the true (p, n) exists in some probability. The former region of good
conditional data is larger than that of bad conditional data. This is particular
character of this region. If the condition of data is too bad, this region does not
exist. Therefore, this region suggests the condition of the model and data. When
this region does not exist in high probability, the condition of the model and data is

too bad to estimate p and .
The latter region based on the likelihood ratio test is the general confidence



An Interval Estimation of LesLiE’s Method — 43 —

region. However, this region has a bias which is the same as the maximum like-
lihood method.

5. Conclusion
For estimations of this model, we get the results as follows :

(a) For a point estimation, the maximum likelihood method is better than the regres-
sion method becausz the former is able to bz expanded to an interval estimation
naturally. However, the former has a bias.

(b) The region based on the probability of r (data) suggests the condition of the model
and data. When this region does not exist in high probability, we cannot use
this model and data.

(c) The likelihood ratio test (program E) gives the general confidence region.
However, this region has a bias which is the same as the maximum likelihood
method. In this method, we must use y2(2) and not y2(1). The condition of m
(number of data) in this method is a careful point to apply.
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Appendix

These are examples of the BASIC programs for the calculation in this paper. These have no
error for the micro computer PC-9801VX (NEC). Although all variables and number jointed by “§”
are defined to be double precision, the precision of results is not so high. “SQR” and “LOG”

functions of Ng-BASIC for PC-9801VX is corrected recently, and they have no error.

Program A. This program searches the initial value for program B.

5 Y e
10 ' LESLIE's method

20 ' Maximum likelihood method

30 ' Search for the initial value

40 ' by TATSURO AKAMINE

50 ' 1989/8/03

60 " mm o

1010 GOSUB *INIT1
2000 RXMAX=1#/XMAX : DELTAPO=RXMAX/20#
2020 FOR K=1 TO 20

2030 PO=K*DELTAPO

2035 B1=0 : B2=0 : E1=0

2040 FOR I=1 TO M1

2050 X2=X1(I)/(1-X1(I)*P0O)
2090 B1=B1+X2

2110 B2=B2+X2*IR2(1I)

2130 E1=E1+LOG(1-X1(I)*P0)
2140 NEXT I

2150 A1=IRSUM/P0+B2

2160 EN=A1/B1

2161 PRINT "P=";P0 , "N=";EN ,
2165 IF EN<IRSUM THEN END
2170 D1=0

2180 GOSUB *0OYMC1

2240 F1=D1+E1

2250 PRINT "F=";F1 : PRINT
3040 NEXT K

5000 END

10000 '——-mmm e

10005 ' Number of data

10010 DATA 5

10020 ' Units of effort (xi)

10030 DATA 7,5,10,8,4

10040 ' size of i th sample (ri)
10050 DATA 700,465,884,636,293
10060 '——-mmm e
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This program requires the point estimator by the maximum likelihood

method. Searching algorithm is NEwTON’s method.

1

10 ' LESLIE's method

20 ' Maximum likelihood method
1

30 NEWTON's method

40 by TATSURO AKAMINE
50 1989/8/02
60 " o oo o e e
1010 GOSUB *INIT1

2010 READ PO

2020 FOR K=1 TO 20

2030 B1=0 : B2=0 : C1=0 : C2=0 : E1=0
2040 FOR I=1 TO M1

2050 X2=X1(I)/(1-X1(I)*P0)
2090 B1=B1+X2

2100 C1=C1+X2*X2

2110 B2=B2+X2*IR2(I)

2120 C2=C2+X2*X2*IR2(I)

2130 E1=E1+LOG(1-X1(I)*P0)
2140 NEXT I

2150 A1=IRSUM/P0+B2

2160 EN=A1/B1

2165 PRINT "P=";PO , "N=";EN ,
2170 D1=0 : D2=0

2180 GOSUB *OYMC1

2190 GOSUB *OYMC2

2220 A2=-IRSUM/P0/P0+C2

2230 EN2=EN*(A2/A1-C1/B1)

2240 F1=D1+E1

2245 PRINT "F=";F1

2250 F2=-EN2*D2-B1

3010 DELTAPO=-F1/F2

3020 P0=P0+DELTAPOQ

3030 PRINT

3040 NEXT K

5000 END

10000 '—-- o

10005 ' Number of data

10010 DATA 5

10020 ' Units of effort (xi)

10030 DATA 7,5,10,8,4

10040 ' Size of i th sample (ri)
10050 DATA 700,465,884,636,293
10060 ' Initial value of p

10070 DATA .05

10080 ' ~cmmmmm e e
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Program C. This program requires the confidence region on the (p, ) plane by the

method of the approximation to the normal distributions.

5
10 ' LESLIE's method

20 ' Approximation to normal distributions

30 ' The method on the (p,n) plane

40 ' by TATSURO AKAMINE

50 ' 1989/8/07

60 " oo e

1010 GOSUB *INIT1

1510 READ POMIN,POMAX,NPO
1520 21=1.96#

1530 PODEL=(POMAX-POMIN)/NPO
2000 FOR K=1 TO M1

2001 PRINT "K=";K ,

2002 IR15=IR1(K)

2003 PRINT "R=";IR15 : PRINT

2010 FOR I=1 TO NPO

2020 PO=POMIN+I*PODEL

2030 P01=P0*X1(K) : X=PO1

2040 D1=(X-1#)*(X-IR15%4#/21/21-1#)
2050 D2=SQR(D1)

2065 D2=2Z1%21*D2

2070 X5=-(21%21*%X-2#*IR15-21%21)
2080 ENS5=(X5+D2)/X/2#

2090 EN6=(X5-D2)/X/2#

3020 ITR=IR2(K-1)

3030 END1=LOG(EN5+ITR)

3040 END2=LOG(EN6+ITR)

3050 PRINT "P=";PO,"N1=";END1,"N2=";END2
3060 NEXT I

3070 PRINT : PRINT

4000 NEXT K

5000 END

10000 "~ ——— e

10005 'Number of data

10010 DATA 5

10020 ' Units of effort (xi)

10030 DATA 7,5,10,8,4

10040 ' Size of i th sample (ri)

10050 DATA 700,465,884,636,293

10060 ' min p , max p , number of classes
10070 DATA O0#,0.02#,20

10080 - e e
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Program D. This program requires the confidence interval of p on the 0L/0p=0
curve by the method of the approximation to the normal distributions.

1
' LESLIE's method
20 ' Approximation to normal distributions
1
1
1
1

30 The method on the (dL/dp) curve
40 by TATSURO AKAMINE
50 1989/8/10
5 St T T ——
1010 GOSUB *INIT1

2000 READ POMIN,POMAX,NPO

2010 PODEL=(POMAX-POMIN)/NPO

2020 FOR K=1 TO NPO

2030 PO=POMIN+K*PODEL-PODEL/2#

2035 B1=0 : B2=0 : E1=0

2040 FOR I=1 TO M1

2050 X2=X1(I)/(1-X1(I)*P0)

2090 B1=B1+X2

2110 B2=B2+X2*IR2(I)

2130 E1=E1+LOG(1-X1(I)*P0)

2140 NEXT I

2150 A1=IRSUM/P0+B2

2160 EN=A1/B1

2161 PRINT "P=";P0 , "N=";EN

3000 FOR I=1 TO M1

3005 EN2=EN-IR2(I-1) : P02=X1(I)*PO
3010 A5=IR1(I)-EN2*P02

3020 B5=EN2*PQ2*(14#-P02)

3030 B6=SQR(B5)

3050 Z1=A5/B6

3060 PRINT Z1,

3080 NEXT I

3085 PRINT : PRINT

3090 NEXT K

5000 END

10000 ' ——c o

10005 ' Number of data

10010 DATA 5

10020 ' Units of efforts (xi)

10030 paTa 7,5,10,8,4

10040 ' Size of i th sample (ri)

10050 DATA 700,465,884,636,293

10060 ' min p , max p , number of classes
10070 DATA 0#,0.02#,50

10080 'm—m o~
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Program E. This program requires the value of likelihood on the 0L/9p=0 curve

for the likelihood ratio test.

5 Y et

10 ' LESLIE's method

20 ' Calculation of likelihood

30 ' The method on (dL/dp) curve

40 ' by TATSURO AKAMINE

50 ' 1989/9/04

60' ________________________________________

1010 GOSUB *INIT1

1600 PAI=3.141592653589793#

2000 READ POMIN,POMAX,NPO

2010 DELTAPO=(POMAX-POMIN)/NPO

2020 FOR K=1 TO NPO

2030 PO=POMIN+K*DELTAPO

2035 B1=0 : B2=0

2040 FOR I=1 TO M1

2050 X2=X1(I)/(1-X1(I)*P0)

2090 B1=B1+X2

2110 B2=B2+X2*IR2(I)

2140 NEXT I

2150 A1=IRSUM/P0+B2

2160 EN=A1/B1

2165 IF EN<IRSUM THEN END

3010 GP=(EN+.5#)*LOG(EN) - (EN-IRSUM+.5#)*LOG(EN-IRSUM)
-M1* 5#*LOG(PAI*2#)+(1#/EN-1#/(EN-IRSUM))/12#

3020 FOR I=1 TO M1

3025 R1=IR1(I)

3030 GP=GP-(IR1(I)+.5#)*LOG(R1)

3040 GP=GP-1#/IR1(1)/12#

3065 GP=GP+IR1(I)*LOG(X1(I)*P0)

3070 GP=GP+(EN-IR2(I))*LOG(1#-X1(I)*P0)

3080 NEXT I

3090 PRINT PO,EN,GP

4000 NEXT K

5000 END

10000 "= e

10005 ' Number of data

10010 DATA 5

10020 ' Units of effort (xi)

10030 DATA 7,5,10,8,4

10040 ' Size of i th sample (ri)

10050 DATA 700,465,884,636,293

10060 ' min p , max p , number of classes
10070 DATA 0#,0.02#,200

10080 "= m e e
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Program F. These are subroutines for program A~E.

19000
19010
19020
20000
20010
20020
20030
20035
20040
20050
20060
20070
20080
20090
20100
20110
20120
20130
20200
21000
21010
21020
21030
21040
21050
21060
21100
22000
22030
22040
22050
22060
22100
23000
23010
23020
23040
23050
24000
24010
24020
24030
24040
24050

*INIT1
DEFINT I-N
DEFDBL A-H,O0-2
READ M1
DIM X1(M1),IR1(M1),IR2(M1)
XMAX=0 : IRSUM=0
FOR I=1 TO M1
READ X1(1I)
IF X1(I)>XMAX THEN XMAX=X1(I)
NEXT I
FOR I=1 TO M1
READ IR1(I)
IRSUM=IRSUM+IR1(I) : IR2(I)=IRSUM
NEXT I
IR2(0)=0
RETURN
*QYMC1
S1=EN-IRSUM+1 : S2=EN
$5=81*S1 : S6=S2*S2
D1=(1/s81+1/82)/2
D1=D1+LOG(S2)-LOG(S1)
D1=D1-(1/S6-1/85)/12
D1=D1+(1/S6/S6-1/85/85)/120
RETURN
*OYMC2
D2=(1/55+1/56)/2
D2=D2-1/82+1/51
D2=D2-(1/86/52-1/85/s1)/6
D2=D2+(1/56/86/82-1/85/85/81)/30
RETURN
*OYMC11
FOR I=1 TO IRSUM
D1=D1+1/(EN-I+1)
NEXT I
RETURN
*OYMC1122
FOR I=1 TO IRSUM
D1=D1+1/(EN-I+1)
D2=D2+1/(EN-I+1)/(EN-I+1)
NEXT I
RETURN





