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Non-Biased Interval Estimation of LESLIE’s Removal Method

Tatsuro AKAMINEY, Ilirohisa KisHINO? and Kazuhiko ITIRAMATSU®

Abstract

LESLIE’s removal method, which is used to estimate the initial population size and the
removal ratio simultaneously, is modeled in terms of the product of binomial distributions.
The approximation of these binomial distributions to the standard normal distribution
presents a new method which has no bias for estimators. This is an improvement over the
maximum likelihood method and the likelihood ratio test, and is essentially equivalent to
a standard goodness-of -fit test. The confidence region on the 2-dimensional plane defined
by the initial population size and the removal ratio gives each confidence interval. This

region is defined by the chi-square distribution with 2 degrees of freedom.

Key words LESLIE’s method, removal method, bias, likelihood ratio test,
goodness-of-fit test

Introduction

SEBER (1982) reviewed catch-effort methods for a closed population : LESLIE’s method
and the removal method. The former is based on the regression model, which is successful
for point estimation. However, the interval estimation is mistaken because the regression
model is not adequate for LESLIE's method. The main reason is that each catching data is
not independent. On the other hand, the latter is based on binomial distribution, which is
a better model for the interval estimation. However, it was a special model in which all
sampling efforts are equal. Therefore, it has little application in practice. In this paper,
we present a new method based on the extended removal method. It has large application
and no bias.

ZIPPIN (1956) made a great contribution to the removal method. Ile applied the
maximum likelihood method for the point estimation by the graphical method. For the
interval estimation, he used asymptotic variance. Therefore, his confidence intervals are
symmetrical around the point estimation. He also used a standard goodness-of-fit statistic
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to test the validity of the model, and showed that it is asymptotically equivalent to the
objective function in this paper. However, his model was the removal method and had little
application.

SCHNUTE (1983) applied the maximum likelihood method for the point estimation and
the likelihood ratio test for the interval estimation. This method is more useful than
Z1pPIN’s. However, his model was also the removal method and the maximum likelihood
method has a bias. The most serious mistake of his method is that he used the chi-square
distribution with 1 degree of freedom. The degree of freedom must be 2. This will be
mentioned strictly in this paper.

AKAMINE (1990) applied the maximum likelihood method and the likelihood ratio test
to the extended removal method in which sampling efforts are not equal. In this paper,
“LESLIE’s removal method” means this model, which has large application, not a regression
model. He corrected the degree of freedom of the chi-square distribution to 2. Addition-
ally, he used the approximation of a binomial distribution to the standard normal distribu-
tion, and checked the confidence region for each sampling time.

We develop AKAMINE's (1990) method and correct the bias of the maximum likelihood
method. It is essentially equivalent to the weighted least-squares method and the goodness
~of-fit test. We use MARQUARDT’s (1963) method which is one of optimization to obtain
point point estimators and an easy method to calculate confidence intervals.

Model

The stochastic model of LESLIE’s removal method is defined as follows (SEBER 1982) :

m

L=1 P, (L.1)
n; !
Pi:—piri (1_p1> ni+11 (1~2)
7! (ni=7) !
ni:n—Rt?l’ Ri:/él 71& (13)
pi=x: p. (1.4)

Where # : initial population size,

p : removal ratio,

m : sample size,

n; . population size of the 7 th sample,

p: . removal ratio of the 7 th sample,

7; . size of the 7 th sample removed from the population,

x; : units of effort expanded on the 7z th sample.
The value of likelihood L is a product of P; (probability of the binomial distribution).

The essence of this model is
E (7;) =n; ps. (1.5)
Where E (8) : expected value of 4.

Substitution of (1.3) and (1.4) into (1.5) gives
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7
E<x> =np—pR: .. (1.6)
Letting Y =#;/x;, and X =R;_;, we obtain the regression model called “LESLIE’s method”

or “DELURY’s method”. This method is useful for point estimation. However, it is difficult
to obtain the confidence intervals of p and # by this method. The main reason is that each
data (R;=37,) is not independent. This does not satisfy the supposition of the regression
model. For point estimation, this has no influence because it is based on only the least
-squares method and not another regression theory. However, interval estimation is
influenced by this greatly. In general, the following variance is used for interval estima-
tion:
SZ

m—2

o= (1.7)

Where S? | residual sum of squares.
For example, when the sampl size is only 2 (m =2), this regression model has no interval.
Therefore, we must use another variance.
Finally, we use the following objective function in this paper :
o e p)?
I n; Pi(l—ﬁi) .

This is a nonlinear model for parameters (p, #) and regarded as the weighted least squares

(1.8)

model of (1.5) with the following weight :

o*=n; pi(l—l)i)~ (1.9)
This is the variance of binomial distribution (1.2). In this paper, we will obtain (1.8) by
correcting the maximum likelihood method.

For correct interval estimation, we must use (1.1) directly. Henceforth we use the
expression “LESLIE’s removal method” to mean (1.1) and not (1.6). We do not use the
regression model (1.6) in this paper. Although ZIPPIN(1956) applied the maximum likeli-
hood method to (1.1) directly, his graphical method is not useful because his model is based
on the removal method and all sampling efforts x; must equal 1. SCHNUTE(1983) also
applied the maximum likelihood method to the removal method. He used the simplex
method for the optimization of (1.1) using a computer and suggested that the maximum
likelihood estimators have bias. Although he applied the likelihood ratio test to obtain the
interval estimation of #, he used the chi-square distribution with 1 degree of freedom. He
used the following curve as a parameter space :

oL
a—p*
This equation means the function p =7 (x) in which p takes the value to make L be

0. (1.10)

maximum at each n. This is opposed to independency of p and ». Therefore, he made a
mistake for the degree of freedom.

AKAMINE (1990) also applied the likelihood ratio test to (1.1) directly by using the chi
-square distribution with 2 degrees of freedom. He also used the (1.10) curve but for
convenience. On the other hand, he used the transformation
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Vi Wi Pi

Z;=— e (1.11)
n; i (1 *f)z')

to calculate confidence regions on the (p, »)-plane at each sampling time. This is based

on the “DE MOIVRE - LAPLACE limit theorem” (MoOD et al. 1974) which proves that the

normal distribution

1 1
N,=—— exp(——5—2z%) 1.12)
VI hp) 2 (
approximates the binomial distribution P; when
n>30, np>5 n(l—p)>5,

and is usually satisfied for LESLIE’s removal method. Therefore, AKAMINE (1990) based his

analysis on the following model instead of (1.1).

L=1 N. (1.13)
i1
Henceforth we use (1.13) because it is almost equivalent to (1.1) and easier to treat for

interval estimation.
Non-Biased Estimation

The likelihood ratio test is defined as follows: The null hypothesis is
Hy 0 6=60, - s 6= 0. (2.1)
Where n : number of parameters to test,
65 : ¢ th parameters, constant under the null hypothesis.
The likelihood ratio A is defined by
A =L/ Lpex. (2.2)
Where L, : likelihood of H,,
L. © maximum value of likelihood.
The distribution of (—21nd) asymptotically approximates the chi-square distribution with
n degrees of freedom as the number of observations increases. Therefore, interval
estimators can be obtained from the likelihood ratio. The point estimators, which give
Ln.x, are obtained by the optimization.

However, it is well-known that these values have bias. The famous example is the
estimators of the normal distribution N (u, ¢?). The estimator of variance from the
maximum lieklihood method is larger than “unbiased variance”. For LESLIE’s removal
method, SCHNUTE (1983) showed a biased sample (See Example 1), and AKAMINE (1990)
showed that when one of the parameters is obvious, another estimator has no bias.
Although this bias is small in practice, no biased estimator is better than biased one
especially for point estimation.

We apply the likelihood ratio test to (1.13) directly. Where (6., 6,) = (p, n). The
logarithm of (1.12) is

InN = -2z —Inmp (1—p) —-2*. (2.3)

Where the subscripts 7 are omitted. Substitution of (2.3) into the logarithm of (2.2)
—21nA=—2 (InLy—InLyay)
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gives

PSTPRS SWRLLY 1St VS S Y (2.4)

Poonrpr(—pr) i

Where L, is evaluated at (po, 7,) and Lmax at (p*, n*). The first term on the right side
is almost 0 in the neighborhood of the point estimator, and contributes less than the other
terms on the far side. In the other terms, each z; is distributed as the standard normal
distribution N (0,1). Thus the second term on the right side is distributed as a chi-square
distribution with m degrees of freedom. This is the definition of the chi-square distribu-
tion. The third term on the right side is distributed as a chi-square distribution with (m —
2) degrees of freedom, because p and » have been estimated. Therefore, (—21nd) is
distributed as a chi-square distribution with 2 degrees of freedom. Although the condition
of the number of observations () is important for the likelihood ratio test in general, it
is not so important for LESLIE’'s removal method for this reason.

The first term on the right side is not 0 exactly. It seems that this is the cause of bias
for the maximum likelihood method, and it is useful to omit this term. Therefore, the
objective function Y is given by

y—§ somg i mb)t (2.5)

i g pi(1=py)
The minimum Y is the non-biased point estimator of (p, #») from (1.5). This equation is
a weighted least-squares version of (1.5). ZIPPIN (1956) had already obtained this equation
as a goodness-of-fit statistic. Iteration methods are necessary to solve this objective
function because this is a nonlinear model for p and ». For the interval estimation, the null

hypothesis

Ho © p=p,, n=mn, (2.6)
gives the confidence region on the (p, »n)-plane as follows:

Y= Yan=x*(2). (2.7

This expression indicates the probability that the true values of (p, ) exist in this region.
On the other hand, AKAMINE (1990) obtained the region as the product set of |z;|<1.
96 (i=1~wm) on the (p, n)-plane. This region is completely covered by the following
region derived from the second term of the right side of (2.4).
Y=<x%(m). (2.8)
This expression gives the probability that r is obtained from each (p, #) in this region.
While (2.7) is a relative relation and gives confidence intervals, (2.8) is an absolute relation
and judges the condition of dara r. Therefore, the region of (2.8) is very wide for good
conditional data, and cannot exist for a bad one. For practical purposes, a more useful
relation to judge the condition of data is given by
Yon~x2(m—2). (2.9)
This is the third term of the right side of (2.4).
This way is essentially equivalent to a standard goodness-of-fit statistic. For the
removal method, ZIPPIN (1956) suggested that (2.5) is asymptotically equivalent to the
equation
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wm (v, —ns;)? n—R,—nt)?
-3 4 )’ (2.10)
il ns; nt

i—1 m
Where si:pikH (11—, i:kﬂ (1=
=1 =1
Therefore, it is also useful to define the objective function as 7 instead of Y, because the
likelihood ratio test is essentially equivalent to a standard goodness-of-fit test.
An explanation of omitting the first term on the right side of (2.4) is as follows : This

operation is equal to transforming a normal distribution (1.12) to the standard normal

distribution
1 1
N1 =—e ——2%). 2.11
0,1) o xp ( 5 ) (2.11)

Namely, all variances #np (1—p) of each sampling time are assumed to be equal. For (2.
11), likelihood (probability) and z are one-to-one correspondence. In this case, the
objective function (2.5) is also a function of the likelihood of N (0,1). The simple example,
m =1 and » =100, helps us to understand this explanation. Which is a better estimation for
this example: A (p, ») = (0.1, 1000) or B (0.01, 10000) ? Likelihood (1.12) judges that A
is better than B because variance of A (90) is smaller than that of B (99). Namely, in the
case of B the probability of getting some value » #+100 is larger than that of A. On the other
hand, likelihood (2.11) judges that A is equal to B exactly. The essence of LESLIE’s removal
method is £ (7) =np, and data is » not A or B. Therefore, it is natural to judge that A is
equal to B. This explanation justifies the operation to omit the first term of (2.4).

Optimization and Interval Estimation

1. MARQUARDT’s method
This method is one of optimization to obtain the minimum value of the objective
function Y. If the model (2.5) is linear, the solution is easily obtained by solving the
following simultaneous equations :
ay ay
o U
IHowever, the model (2.5) is nonlinear, and it is difficult to solve these nonlinear equations.

0. (3.1)

For a nonlinear model, it is better to search for the minimum point of Y directly by using
optimization methods.

For the model (2.5), it is easy to find the solution because the number of parameters
is only 2. SCHNUTE(1983) used the simplex method and AKAMINE (1990) used NEWTON’s
method for model (1.1). In this paper, we present a BASIC program using MARQUARDT’S
(1963) methhod. This program searches for the minimum point of (2.5) quickly with a
wide region of convergence. Therefore, we can easily obtain the point estimators of
LESLIE's removal method.

MARQUARDT’s method is a mixture method of the steepest descent method and
NEWTON’s method. For searching for the minimum point, it is written as the simultaneous
equations

(H+AI) 46=—g. (3.2)
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Where H :
A:
1:
48 :
g:

Hessian matrix,

reducing factor,

unit matrix,

correction vector of parameters,
gradient vector.

— 31 —

First, let A =1. This is the steepest descent method. Next, iterate solving (3.2) with

controlling 2. When Y becomes smaller, let A be small. On the other hand, when Y

becomes larger, let A be large and repeat the same iteration. Finally, let A — 0. This is

NEWTON’s method. Although A is added to the diagonal elements of H, it is equivalent to

multiplying the diagonal elements of H by (1+ 1) because of the scaling of parameters.
In the model (2.5), concrete expressions of (3.2) are as follows :

2tY %Y oY
B on*  ondp B on
H= 2ty a8y |’ 9= Y (3.3)
onaop op? op
Y _ (r—unp) (r+np) (3.4)
on n?p(1—p)
2Y - +p—2
_ sy (r —np) (r+np —27p) (3.5)
op np*(1—p)*
otY r?
=23 (3.6)
on? n*p(1—p)
%Y r2(1—=2p) + n?p?
=3 3.7
ondp . wpt(l-p)® (3.7
2°Y 2(1—3p+3p%) + np* (n—2
sy r*(1=3p+3p?) +np*(n—27) (35
op? np*(1—p)*°

Where subscripts ¢ of the right sides of (3.4) ~ (3.8) are omitted.
The process of MARQUARDT’s method is as follows :
Input data r, x and initial values of 6°'.
Calculate Y,
Let 1=1.
Calculate H and g by using (3.3) ~ (3.8).
Multiply the diagonal elements of H by (1+21).
Solve the simultaneous equations (3.2).
(6219 + 46)— gnev.
Calculate Y"ev,
If Yrew< Yold thenlet 1/2 — A, §°"— g°¢, Y ¥— Yold gand go to (d).
If Yrew= Yo then let %2 — 1 and go to (e).
If Yrew= Yol after 10 times iterations of (j) continuously, judge it to be the solution

om0 0 T
[N N N N N N NP N NN

—

o~ o~~~ o~ o~ o~~~

e

and end this program.
An example BASIC program is shown in Appendix. The values estimated by the
regression method are the best initial values of parameters for good convergence. It
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converges in about 20 iterations usually.

2. Interval estimation
We can obtain the interval estimators by drawing contours of (2.7) on the (p, =)
-plane. Although it is difficult to draw contours by freehand, it is easy now by using micro
-computers and X-Y plotters. Many algorithms have been developed for drawing contours.
In this paper, we use the “grid method” explained in the following paragraphs. This is a
simpl and popular algorithm to draw contours and sufficient to obtain the interval
estimators.
The process of this method drawing a contour Y (x, ¥) =« on the (x, y)-plane is as
follows :
(a) Let F(x,y)=Y (x,y) —a=0.
(b) Determine the drawing range as x=x~%, V=3 ~},.
(c) Make m X #n grids in this range as x,=x,+ sk, s= (—x)/m, yvo=n+th, t=(»,—v,)/
n.
(d) For each grid, let pi= (x4, 3), Po= (Xn, Yir1), 3= Kpx1, Vir1), Pe= (Xpwr, Y0), Ds=D1.
When F (p;) F (p:+:) =0, calculate ¢;=(x, y) as follows :
0.= F(p)pisi— F(p)ps 4. 1)
l F(p)—F(p.) '
This is the approximated cross point of the grid and a contour. In general, there are

only 2 cross points q; and g, on the grid. In this case, draw the line q;q..

(e) Specially, there are 4 cross points q, ~ q; on the grid. In this case, only two cases are
possible as lines {q,q,, ¢:q.} or {q.q:, ¢.qs}. Inmodel (2.5), only the latter case is
possible. Therefore, draw the two lines ¢,q, and q.qs.

An example BASIC program of this method, which draws equilibrium yield contours
of the BEVERTON-HOLT model on a CRT display, is shown in KAT0O(1988).

The demerits of this method are as follows :

(1) It requires much time to draw.

(2) For approximation (4.1), g is not such a good approximation to the real cross point

of the grid and a contour.

As an example of (1), the 150X 100 grids (Figs. 1, 4, 5) take 30 minutes to draw with our

PC-9801VX (NEC) micro computer. On the other hand, the 50 %30 grids (Figs. 2, 3) take

only 3 minutes. As an example of (2), the drawn contour is zigzagged and its edges are

not so sharp. These narrow and sharp figures are difficult to draw accurately by any
algorithm.

The most countermeasure for demerit (2) is making grids small. However, this
aggravates demerit (1). For practical purposes, the figure of a whole contour is not so
necessary. For the interval estimation, magnified figures of both edges are useful. These
figures are drawn sharply and rapidly with large grids. Therefore, demerits (1), (2) and
operation (e) are not so concerned with the interval estimation.
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(1nN)

INITIAL SIZE

.00S — .01 ’ .015

REMOVAL RATIO (P)

Fig. 1. The confidence region on the (p, n)-plane for Example 2. The white circle represents
point estimators and the black circle represents true values. In this figure, the two circles
almost overlap.

Examples

For the check of our method, the artificial data made from the model (1.1) is useful.
Therefore, we examine the data of SCHNUTE (1983) and AKAMINE (1990).
(Example 1) Point estimation for SCHNUTE’s (1983) data

This model is x=(1, 1, 1), and data is r=(90,60,40). The true values of parameters
are (p, n) = (1/3, 270) obviously and this data has no error. Although regression method
(1.6) gives the true values, the maximum likelihood method gives biased values (0.341807,
265.255) (SCHNUTE 1983 ; AKAMINE 1990). The BASIC program in the Appendix with
initial values (0.3, 300) gives the true values (0.333333, 270.000) after 11 iterations.
Therefore, the objective function (2.5) is better than the maximum likelihood method.

(Example 2) AKAMINE’s(1990) data-1

This model is x= (7, 5, 10, 8, 4), and data is r=(700,465,884,636,293). The true values
are (p, ») =(0.01, 10000) and r has a little rounding error. The BASIC program with the
initial values (0.02, 10000) gives the solution (0.00998152, 10018.6) after 17 iterations. These
values are nearer to the true values than the maximum likelihood solution (0.01003895,
9968.41) (AKAMINE 1990). The latter has more error caused by bias. The BASIC program
also gives Y =0.0000505631 at the solution. This is Yy;n and much smaller than x2(3) g.e75 =
0.2158. The test of (2.9) shows that this data is too high in precision to have been
obtained from model (1.1) naturally.

The confidence regions of (2.7) and (2.8) on the (p, n)-plane are shown in Fig. 1
drawn by the grid method. The outer contour is ¥ =x2(5)00;=11.07 from (2.8), in this
region we obtain data r in 95%. The inner contour is ¥ = x2(2) 0.0s=5.991 (Ymin=0) from
(2.7), this region involves true (p, ) in 95%. The upper left and lower right parts of the
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Fig. 2. The magnified figure of the upper left part of Fig. 1.
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Fig. 3. The magnified figure of the lower right part of Fig. 1.

inner contour are magnified to be shown in Figs. 2 and 3. From these figures we can read
959% confidence intervals as »=7420~16933 and p =0.00558 ~0.01423. The upper part of »
is much wider then the lower part. AKAMINE (1990) gave 95% confidence intervals as n=
7411~16611 and p» =0.0057~0.0143 by using the maximum likelihood method. These are
almost equal to the new method in practice.

(Example 3) AKAMINE’s(1990) data-3

This data has more error then Example 2 as r=(736,488,827,636,290). The point
estimations are (0.0119783, 8575.14) and Yuin=5.35061, which is smaller than x2(3) .05 =
7.815. Therefore, this data is obtained in 95% from model (1.1). The confidence region
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Fig. 4. The confidence region on the (p, »)-plane for Example 3. The white circle represents
point estimators and the black circle represents true values.
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Fig. 5. The confidence region on the (p, n)-plane for Example 4. The white circle represents
point estimators and the black circle represents true values.

is shown in Fig. 4. The contours of (2.8) (Y =11.07) and (2.7) (Y =5.35+5.99=11.34) are
almost overlapped. The magnified figures, which give confidence intervals as »=6714
~12632 and p=0.00769~0.01612, are omitted in this paper. AKAMINE (1990) gave point
estimations as (0.01202092, 8543.93) and interval estimations as #=6697~12632 and p =0.
0077~0.0161. Although interval estimations are almost equal to the new method, point
estimation has more error caused by bias.
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[Example 4)

This data has more error than Example 3 as r= (754,500,799,636,287). The point
estimations are (0.0130701, 7976.33) and Y,:,=11.8916, which is larger than 7.815.
Therefore, it is impossible to obtain this data in 95% from model (1.1). The value of Yy
is larger then 11.07. Therefore, the region of (2.8) does not exist. The following analysis
is meaningless because this data is not according to model (1.1). Fig. 5 shows only the
confidence region of (2.7) in which true values still exist. The magnified figures, which
give 95% confidence intervals as #=6393~11181 and p=0.00884~0.01716, are omitted in
this paper.

Conclusion

The standard procedures for LESLIE's removal method is as follows :
(1) The BASIC program in the Appendix gives the point estimators (p, #) and Y.
(2) The conditon of data is tested by the equation
Yom~x2(m—2).
(3) The confidence region on the (p, n)-plane is obtained by the equation
Y=Yunt+222).

The upper left and lower right parts of this contour give the confidence intervals of p

and #n. This contour is easily drawn by using a BASIC program according to KATO

(1988).

In the procedure (2) if the test is significant, the data is not according to the model (1.
1) and the other procedures are meaningless. Making the confidence level of the procedure
(3) equal to that of the procedure (2) is one way to avoid this difficulty. However, it is
more important to obtain good conditional data, according to model (1.1), through a well
-designed investigation or experiment.

Although these procedures have no bias caused by the maximum likelihood method,
the values of estimations are not so different from the latter ones in practice. Procedure
(2), which tests the condition of data and models, is the most important in this analysis. It
is essentially equivalent to a standard goodness-of-fit test.
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Appendix

This BASIC program searches for the minimum point of the objective function Y =32z* by
MARQUARDT’s method. It involves the non-biased point estimators of LESLIE’'s method. Users
input data after 30,000 lines; the type of variable r is an integer because it is a number of
individuals. When a user inputs a very large number for r, he must exchange all “IR” of variables
in this program list to “R” because BASIC cannot treat a large integer.

! LESLIE's (DELURY's) method
30 " MARQUARDT's method for Sigma zxz

40 by TATSURO AKAMINE
50 1990/1/20
6 O i M S g S S e -

1010 GOSUB *INIT1

1015 GOSUB *PRIOUT

1020 AMBDA=1 : BNU=2

1030 READ POLD, ANOLD

1035 IF ANOLD<IR2(M) THEN PRINT "n is small” : STOP

1038 K1=0

1040 *REPEATI

1045 IF K1>50 GOTO *END2

1050 FOR I=1 TO M

1060 P(I)=POLD*X(I)

1070 ANCI)=ANOLD-IR2(I-1)

1080 NEXT I

1100 GOSUB *YVALUE

1110 YOLD=Y

1115 GOSUB *OUTPUT

1200 GOSUB *DIFFER

1210 K2=0

1220 *REPEAT2

1250 A=Ax(1+AMBDA) : D=D*(1+AMBDA)

1300 GOSUB *SOLUB

1400 PNEW=POLD+DELTAP : ANNEW=ANOLD+DELTAN

1450 FOR I=1 TO M

1460 P(I)=PNEW*X(I)

1470 AN(I)=ANNEW-IR2(I-1)

1480 NEXT I

1490 GOSUB *YVALUE

1500 YNEW=Y

1510 IF YNEW<YOLD THEN AMBDA=AMBDA/BNU : K1=K1+1
: POLD=PNEW : ANOLD=ANNEW : GOTO *REPEATI

1520 AMBDA=AMBDA*BNU : K2=K2+1

1530 IF K2>10 GOTO *ENDI1

1535 PRINT " J=";K2,"lambda="; AMBDA
1540 GOTO *REPEAT2

20000 *INIT1

20010 DEFINT I-N

20020 READ M

20030 DIM X(M),IR(M),IR2(M),P(M),AN(M)
20040 IR2(0)>=0 : IRSUM=0

20050 FOR I=1 TO M

20060 READ X(I)

20080 NEXT I

20090 FOR I=1 TO M

20100 READ IR(I)

20110 IRSUM=IRSUM+IR(I) : IR2(I)=IRSUM
20120 NEXT 1

20200 RETURN

20500 *PRIOUT

20510 FOR I=1 TO M

20520 PRINT X(I),IR(I),IR2CI)

20530 NEXT I

20540 RETURN



Non-Biased Estimation of LESLIE’s Method

21000 *YVALUE

21010 Y=0

21020 FOR I=1 TO M

21030 AN1=AN(CI) : P1=P(I) : R1=IRC(I)

21040 Y=Y+ (R1-AN1%P1)*(R1-AN1%P1)/ (AN1*P1%(1-P1))

21050 NEXT I

21060 RETURN

22000 *DIFFER

22010 A=0 : B=0 : D=0 : E=0 : F=0
22020 FOR I=1 TO M

22030 ANI=ANCI) : AN2=AN1%AN1 : AN3=AN1*AN2

22040 P1=P(I) : P2=P1%P1 : P3=P1lx%P2

22045 Ql=1-P(I) : Q2=Q1%*Ql : Q3=Q1*%Q2

22050 R1=1R(I) : R2=R1x%R1

22060 X1=X(1) : X2=X1%X1

22070 RNP1=R1-AN1%P1 : RNP2=R1+AN1x%P1l

22080 E=E+RNP1%RNP2/AN2/P1/Q1l

22090 F=F+X1%RNP1% (RNP2-2%R1%P1)/AN1/P2/Q2

22100 A=A+R2/AN3/P1/Q1

22110 B=B+X1%(R2%(1-2%P1)+AN2%P2)/AN2/P2/Q2

22120 D=D+X2% (R2%(1-3%P1+3%P2)+AN1%P3% (AN1-2%R1))
/AN1/P3/Q3

22130 NEXT I

22140 A=2%A : D=2x%D

22150 RETURN

23000 *SOLUB

23020 BUNBO=A%D-B%*B

23030 DELTAN=(ExD-BxF)/BUNBO

23040 DELTAP=(AxF-ExB)/BUNBO

23050 RETURN

24000 xOUTPUT

24010 PRINT "K=";K1

24020 PRINT "p=";POLD,"n=";ANOLD,"Y=";Y
24030 PRINT " lambda="; AMBDA
24100 RETURN

25000 %END1

25010 PRINT "Completed!"

25020 END

26000 *END2

26010 PRINT "Not completed?"

26020 END

30000 '------mmmmmmmm e e e
30005 Number of data

30010 DATA 5

30020 Units of effort (xi)

30030 DATA 7, 5, 10, 8, 4

30040 ' Size of i th sample (ri)

30050 DATA 700, 465, 884, 636, 293
30060 Initial value of p and n

30070 DATA .02 , 20000

BO100 ' === o m oo oo



